Tag Archive for: Biodiversity

Soil Biodiversity and Soil Organic Carbon: Why Should Nations Invest in It to Keep Drylands Alive?

Author: Graciela Metternicht | Published: June 18, 2018

The 2018 World Day to Combat Desertification calls to reflect on the true value of land and the need to invest in it; healthy soils are central to sustainable development. The 2030 Agenda for Sustainable Development increases the demand on soils to provide food, water and energy security, protect biodiversity, and mitigate climate change, increasing the centrality of soils in global environmental and development politics. SDG target 15.3, on Land Degradation Neutrality, reflects the growing awareness that land, and by extension soil biodiversity and soil organic carbon, is both a natural resource and a public good that underpins wider sustainable development.

Soil Organic Carbon (SOC) and soil biodiversity are key to the multifunctionality of a landscape, and the reason why strengthening investment and legislation in sustainable land management is considered to be central to achieving many of the Sustainable Development Goals.

KEEP READING ON IISD

Grow Life in the Soil

The need is critical to grow more life in the soil, and it starts by treating it as you would your own body.

Author: Raylene Nickel | Published: May 16, 2018

Soil is filled with living, breathing, hardworking creatures – it’s a natural commodity more important than any cash crop. When soil is alive, it’s teaming with macro- and microorganisms, ranging the gamut from highly visible beetles and worms to microscopic viruses, bacteria, and fungi. Each of these soil citizens provides a service to the healthful functioning of the broader community.

Having lots of healthy and diverse organisms in the soil creates a self-sufficient cropping system that becomes less dependent upon synthetic fertilizers and pesticides.

The system itself produces fertility for robust plant growth, resistance to pests, and water-stable soil aggregates that enhance soil porosity to permit rapid water infiltration and to resist erosion.

In a nutshell, such a system produces resilient crops. In today’s uncertainty of climate, the need for plant resilience is growing more urgent by the day.

KEEP READING ON SUCCESSFUL FARMING

 

Bless This Mess: Syntropic Coffee Farming Takes Root In Brazil

Author: Juliana Ganan | Published: May 10, 2018

When I first saw João Pedro David’s farm, it was hard to understand. For me, having grown up the daughter of a monoculture-conventional coffee farmer in Minas Gerais, Brazil, David’s land looked more like a forest than a farm, with some Yellow Catuaí coffee trees dotted here and there.

But with time, David made his case, and explained the symbiotic relationship between coffee and the various species of fruits and vegetables native to our Mantiqueira region he had chosen to carefully plant here.

David’s vision for his Sítio Travessia farm is systemic and soil-focused—the ground here is always covered with mulch and organic material. And so it makes sense that it carries the look of a forest, which, after all, is really just an organic system of constant, dynamic soil-enrichment, with each species in an ecosystem contributing to the health of the whole.

KEEP READING ON SPRUDGE

Turning Desert to Fertile Farmland on the Loess Plateau

Soil is not just dirt but a living system with many important functions. Degraded soils impact on food production, erosion, and more, affecting the lives of people around the world. Restoration efforts in China, Zambia and other countries seek to reverse this trend.

Author: Richard Blaustein | Published: April 5, 2018

Around 3,000 years ago, farmers settled on the fertile Loess Plateau in western China, a region about the size of France. By the 7th century, the rich soils were feeding about one quarter of the Chinese population. But intense pressure on the land eroded the soil. By the 20th century, desertification had condemned the remaining population to poverty. “It was a desperate place,” says Juergen Voegele, an agricultural economist and engineer at the World Bank who first visited the region in the mid-1980s. But that would soon change.

Voegele returned in the 1990s to lead a major 12-year World Bank project to help restore dirt to healthy soils on a vast scale. “This was absolute desert. A few years later the whole thing came back,” he says. “We saw birds, butterflies, insects – the whole ecosystem began to recover. Even after hundreds of years of complete devastation, the seeds were still in the ground and things began to happen very quickly. We did not expect that.”

By 2009, and the programme’s end, approximately 920,000 hectares had been restored of the 65,000,000-hectare region in western China. But elsewhere in China and around the world, soils are still suffering.

KEEP READING ON RETHINK

Australian Scientist Urges Farmers to Take a Light Touch With Their Soils

Published: May 4, 2018

Curiosity about regenerative agriculture is growing and a field day drew an audience of more than 150 people to the Clinton Community Hall in South Otago this week.

The attraction was an address by Australian soil scientist Dr Christine Jones, whose research on restoring soil health has proven controversial among New Zealand soil scientists.

Jones introduced her audience to the concept of “light farming” – restoring carbon, organic nitrogen and biodiversity to agricultural soils through photosynthesis.

“Imagine there was a process that could remove carbon dioxide from the atmosphere, replace it with life-giving oxygen, support a robust soil microbiome, regenerate topsoil, enhance the nutrient density of food, restore water balance to the landscape and increase the profitability of agriculture,” she said in a supporting scientific paper.

“Fortunately there is. It’s called photosynthesis.”

KEEP READING ON NZ FARMER

Mesquite in Mexico: The Renaissance of an Ancestral Staple Crop in a Time of Climate Change

Probably no other plant has played such a vital role in the ecologies, and among the human populations of the arid and semiarid regions of Mexico and the US, as the multifunctional mesquite tree. This extremely resilient and adaptable tree has a rich ethnobotanical history and holds great potential to become a major staple food crop for drylands throughout the world, while supporting climate change mitigation efforts and providing food security in the face of desertification, water stress, and climatic instability.

The Ecology of Mesquite

Mesquite is a nitrogen-fixing member of the legume family in the genus Prosopis. This genus includes around 44 species, distributed mainly throughout the Americas with a few species from Africa, the Middle East, and the Indian subcontinent. Some species native to the American continent are now naturalized around the world after being introduced either as a source of livestock fodder or as part of erosion control programs.

Old mesquite tree (P. laevigata) in the middle of a recently abandoned field in Mexico

The wide climatic range of Prosopis extends from fully tropical to warm temperate. Most species are able to thrive in extremely high temperatures and some of them can withstand temperatures as low as -20° C (-4° F).

With roots that can reach up to 50 meters (164 feet) deep and that are colonized by nitrogen-fixing bacteria and symbiotic fungal allies, mesquite has an extraordinary ability to thrive in very harsh environments and withstand long periods of drought. In general, Prosopis can thrive in regions that receive as little as 9-12″ of average rainfall, although when other sources of moisture are available, it can grow in hyper-arid regions that receive virtually no rainfall like the Atacama Desert or the Arabian Peninsula.

This multipurpose nitrogen-fixing tree is able to grow in extremely degraded soils and can tolerate alkaline soils with a pH as high as 11. In some extreme cases, like on the semiarid Pacific coast of Mexico, Prosopis juliflora grows right on the shore of coastal saltwater marshes.

The pods and leaves of most Prosopis species, both containing a high percentage of protein and other essential nutrients, provide a vital source of food for wildlife. Mesquite is also considered a nurse plant in the ecosystems where it grows, since many native plants are only able to establish under the microclimate that the mesquite provides.

The presence of mesquite and the leaf litter that it produces helps to increase soil fertility and lowers salinity. Soil particles and debris of organic matter are usually retained and fixed by its roots giving Prosopis an important role in erosion control. Studies done by Richard Felger, a world Prosopis expert, estimate that some species of mesquite can sequester as much as 1.2 to 8.94 tons/ hectare/year of carbon, depending on the climate and the soil type.

Traditional and Current Uses of Mesquite

The highly nutritious and sweet pods of the mesquite have been one of the most important staple foods of the native peoples of the Americas for thousands of years before corn was domesticated. The oldest archeological evidence of the use of mesquite as food dates from 6,500 BCE from the Tehuacan Valley in Oaxaca, Mexico.

Pod/seed selection from superior wild P. laevigata trees for propagation and further genetic improvement.

The fruit produced by Prosopis species are legume pods which contain, depending on the species, 7-22% protein, 11-35% soluble fiber, and as much as 41% sugar content. The sugar is mostly fructose, which humans can process without insulin. The mesquite pods have a low- glycemic index and contain lysine and other essential amino acids. They are also a good source of potassium, manganese, and zinc. Studies done by Richard Felger, estimate that one hectare of mesquite can yield between 2-10 tons of fresh pods, depending on climate and species.

During the harvesting season, indigenous people would gather huge quantities of pods. Fresh pods were commonly chewed, and are still consumed raw by children in rural areas of Mexico. The majority of the harvest was either sun-dried or roasted on hot coals. The pods were then ground into a meal using mortars and pestles or large wooden poles. This meal was sometimes sprinkled with water to make dense cakes that, once dry, could last indefinitely, providing vital sustenance during times of drought. The meal was also mixed with water to make a refreshing sweet drink or was fermented slightly.

Apart from being a prime source of food, native populations used the mesquite wood for fuel, tools, and construction, and a variety of plant parts were used in medicine.

Few native populations in northern Mexico and the southwestern US still rely on mesquite as a source of food. Human uses of processed pods have declined and traditional knowledge about the processing and consumption of the pods has, for the most part, been forgotten. This was a result of cultural colonization and the introduction of alternative foods like wheat, oats, and barley, as well as the widespread deforestation of mesquite savannas and woodlands that came with land clearance for agriculture, industrialization, and mining.

The main present use of Prosopis worldwide is for fuel. In many arid regions, where few other trees grow, mesquite is often the most important source of firewood for rural populations. An important industry exists in both Mexico and the US around the production of mesquite charcoal for barbecues and smoke wood.

Mesquite wood is commonly used for high-end rustic furniture and cabinets. Although the felling and milling of mesquite is now under regulation in Mexico, illegal logging keeps pressure on the few last stands of old growth trees and sustainable forestry programs involving mesquite are virtually non-existent.

The flowers of Mesquite are an abundant and high-quality source of nectar and pollen for apiculture in all regions where species are native and, in several areas, where it has been naturalized. A good example of this is Hawaii, where one of the world’s most expensive gourmet honeys, Kiawe white honey, is produced from the flowers of the introduced Prosopis pallida. Mexico, the world’s largest exporter of honey, also derives much of its production from the 9 species of Prosopis that grow there.

Honeybee foraging a mesquite flower during the dry season.

Mesquite is also known for its value as an animal fodder. The palatable leaves contain between 11-18 % crude protein and the trees maintain green foliage when most other vegetation has dried out. The pods also constitute a significant source of feed for grazing animals. Since the seeds germinate readily after passing through the digestive tract of grazing animals, these animals provide the most important means of mesquite propagation. In many regions of Mexico, mesquite pods are harvested, stored then sold as animal fodder in the drier months of the year.

The Mesquite Renaissance in the Central Mexican Plateau

In 2016 I co-founded the Mexquitl project with the objective of starting a regional mesquite flour operation that would support the renaissance of mesquite as an ecologically and culturally appropriate staple food.

The fresh pods are wildcrafted by local communities that conserve some of the last healthy stands of mesquite woodlands in the area. The pods are selected and hand- harvested straight from the trees by women who get paid the equivalent of $1.40 USD per Kg of fresh pods. As a reference, the current price of mesquite pods for livestock fodder in the region is around $0.16 USD/Kg and the price of corn around $0.22 USD/Kg. As an incentive for these women to bring back mesquite into their own diets, we offer free milling of unlimited amounts of pods for self-consumption.

Pods being sundried for 2-3 days on corrugated metal sheets.

All the harvest goes through a full inspection to make sure all pods are free from mold before they are spread on sheets of corrugated metal to be sun-dried for 2-3 days. During the drying process, the pods are stored in airtight containers overnight as well as during cloudy weather. Once fully dried, pods can be stored safely until milling time.

 

The dried mesquite pods are passed twice through the hammer mill using two different mesh sizes in order to come up with a fine flour texture. We then package and label the flour before it is sold at health food stores in central Mexico.

Portable hammer mill run by a 12 HP gasoline engine used for mesquite flour production.

One of the project’s goals is the creation of a cookbook in Spanish that will include traditional and new recipes that highlight the unique flavor of mesquite, such as tortillas, tamales, bread, cookies, waffles, ice cream, etc. For English speakers, I highly recommend the Eat Mesquite and More cookbook published by Desert Harvesters. The work of this Tucson- based non-profit has been a great inspiration for us.

To promote the edible uses of mesquite and the planting of mesquite trees in the agricultural landscape, we’ve been hosting community workshops and mesquite milling events at different locations in the region. Sharing information about the benefits of integrating mesquite into the diet and creating a local demand of the products is a critical step to achieve the widespread utilization of mesquite as a staple crop.

With the support of Via Organica, a Mexican non-profit organization that promotes regenerative organic agriculture practices, and the Organic Consumers Association in the US, we began working on the design of the first agroforestry system managed for the production of mesquite pods and their processing into flour and other value-added products. The main objective of the project is to showcase and test the agricultural potential of this high-yielding, drought tolerant perennial crop.

This pioneering project is being implemented at the Via Organica Ranch, an inspiring educational center located in the San Miguel de Allende region that hosts a wide range of educational experiences and receives visitors from around the world. The ranch is located in a subtropical, semi-arid region that receives between 480-580 mm (19-23 inches) of annual rainfall. Via Organica recently acquired the 5.5 hectares where the agroforestry system is being implemented. The land has severely degraded soils due to many years of overgrazing by cattle.

Around 650 mesquite seedlings of Prosopis laevigata were propagated on site from selected seeds that came from local wild trees that were superior in terms of annual yield, early maturation, pod sweetness, and pod size. The seedlings were grown in deep forestry tubes that promote healthy tap roots.

Mesquite seedlings planted along a rock terrace follosing a Keyline pattern with chiken wire to protect them from rabbits.

The layout of the agroforestry system is based on rock terraces placed 85′ apart, following a Keyline pattern that enables equidistance between rows, minimizes runoff, and distributes humidity throughout the site. The trees were planted along the rock terraces at different spacings between 4 to 6 meters (13-20′ in) order to find the most efficient spacing for the region. Inside each row, mesquite was interplanted in different combinations with other drought tolerant crops, including: maguey (Agave salmiana), nopal (Opuntia ficus-Indica), jujube (Ziziphus jujuba) and goji (Lycium chinensis). The savanna-style silvopastoral area in between rows includes wide spaced trees of sweet acacia (Acacia Farnesiana), palo dulce (Eysenhardtia polystachya), native oaks (Quercus spp.) and carob (Ceratonia siliqua).

This project is a first step in making mesquite a food crop of commercial importance at a regional level. Much work needs to be done in terms of developing improved mesquite cultivars and more efficient small-scale harvest and post-harvest processing techniques.

Selected seedlings emerging from the forestry tubes with substrate inoculated with mycorrhizal fungi and native rhizobium bacteria.

Arid and semiarid regions occupy around 60% of Mexico’s territory, this model will be a living example of how this high-yielding and reliable perennial crop can be a key component in creating agricultural systems that can regenerate degraded lands and sequester atmospheric carbon, while creating economic opportunities and feeding people in the face of climate instability and water stress.

 

Gerardo Ruiz Smith’s work is mostly focused on the research and propagation of drought tolerant perennial crops and design of agroforestry and silvopastoral systems that help regenerate degraded lands, restore the water balance, sequester atmospheric carbon, support the local economies, and strengthen food security for the people who live in arid and semi-arid regions of Mexico. Email gruizsmith@gmail.com.

This article was originally published in Permaculture Magazine North America Issue 08.

Native Knowledge: What Ecologists Are Learning from Indigenous People

From Alaska to Australia, scientists are turning to the knowledge of traditional people for a deeper understanding of the natural world. What they are learning is helping them discover more about everything from melting Arctic ice, to protecting fish stocks, to controlling wildfires.

Author: Jim Robbins | Published: April 26, 2018

While he was interviewing Inuit elders in Alaska to find out more about their knowledge of beluga whales and how the mammals might respond to the changing Arctic, researcher Henry Huntington lost track of the conversation as the hunters suddenly switched from the subject of belugas to beavers.

It turned out though, that the hunters were still really talking about whales. There had been an increase in beaver populations, they explained, which had reduced spawning habitat for salmon and other fish, which meant less prey for the belugas and so fewer whales.

“It was a more holistic view of the ecosystem,” said Huntington. And an important tip for whale researchers. “It would be pretty rare for someone studying belugas to be thinking about freshwater ecology.”

Around the globe, researchers are turning to what is known as Traditional Ecological Knowledge (TEK) to fill out an understanding of the natural world. TEK is deep knowledge of a place that has been painstakingly discovered by those who have adapted to it over thousands of years. “People have relied on this detailed knowledge for their survival,” Huntington and a colleague wrote in an article on the subject. “They have literally staked their lives on its accuracy and repeatability.”

KEEP READING ON YALE360

One Grain at a Time: Assam’s Rice Seed Library for Climate Resilience

Author: Sahana Ghosh | Published: February 8, 2018

In the foothills of the eastern Himalayas in Assam, Mahan Chandra Borah, is racing against time to stock up nearly-extinct and rare indigenous rice varieties, one grain at a time, in his unique seed library-to help secure genetic diversity for climate resilience.

Borah’s ‘Annapurna’ library is “northeast India’s first indigenous seed saving library” that seeks to collect and promote the cultivation of heirloom rice landraces of the region in the wake of climate change. A history graduate-turned-farmer, he started the seed bank about 12 years ago, from Meleng in Assam. Backed by traditional wisdom on diverse rice cultivars imparted by the elderly in his village, he fanned out to hamlets across the northeastern states in hunt of these treasures. He subsequently converted it into a library. His assemblage includes aromatic, sticky, black, flood-tolerant and hill rice among others.

“I started with three varieties. Now I have 250 varieties of rice, mostly from northeast India,” Borah said. “These traditional rice types can withstand extreme climatic variability such as floods, drought etc. But they are not cultivated extensively nowadays due to preference for hybrid or high yielding varieties (HYVs).”

A seed chain

Annapurna is also a sister library of the California-based Richmond Grows Seed Lending Library. Richmond Grows in its website says the idea is that you “plant the seeds, let some go to seed, then return some of these next generation seeds for others to borrow.” So, people from the region can borrow seeds from Borah’s library, conserve it and lend the seeds to others.

Borah has expanded his endeavour to open up libraries in other parts of the state in Sadiya, Balipara and Kaziranga.  “Farmers come to me to deposit seeds. I sow them in a plot of land and then later on, others come and borrow the resulting seeds. It is not a strict rule that they have to give me back some seeds in return. They can carry on the chain. I characterise their properties and educate the farmers as well so they can make an informed choice about the rice variety they want to procure,” he explained.

According to Ministry of Agriculture’s agricultural statistics for 2015-16, India produced 104.31 million tonnes of rice over 43.38 million hectares. Rice is the most significant crop cultivated in northeast India.

KEEP READING ON MONGABAY

Changing Weather Patterns Throwing Ecosystems Out of Whack

Day and night will soon align, marking the start of spring. But the timing of nature’s calendar is starting to fall out of sync.

Author: University of South Florida | Published: February 5, 2018

In a study published in Nature Climate Change, a team of researchers from the University of South Florida in Tampa found that animal species are shifting the timing of their seasonal activities, also known as phenology, at different rates in response to changing seasonal temperatures and precipitation patterns.

“As species’ lifecycles grow out of alignment, it can affect the functioning of ecosystems with potential impacts on human food supplies and diseases,” said lead author Jeremy Cohen, PhD, postdoctoral researcher at the University of South Florida Department of Integrative Biology. “We rely on honeybees to pollinate seasonal crops and migratory birds to return in the spring to eat insects that are crop pests and vectors of human diseases. If the timing of these and other seasonal events are off, ecosystems can malfunction with potentially adverse effects on humans.”

 

KEEP READING ON SCIENCEDAILY

In Ethiopia’s Wheat Diversity, the Seeds of a Wheat Rust Solution

With pathogens like Ug99 evolving and adapting quickly, a diverse agricultural gene pool is often the best insurance for the future.

Authors: Kerstin Hoppenhaus & Sibylle Grunze | Published: January 22, 2018

Ethiopia is one of the oldest cultivating regions not only for wheat, but also for other crops like coffee, millet, and barley. Over thousands of years, the environment and farmers have interacted by selecting and breeding in order to adjust old crop varieties to regional conditions. The result is a unique variety of crop variations, and today, Ethiopia is recognized worldwide as a center for genetic diversity.

The Russian botanist Nikolai Vavilov identified these centers as early as 1926. He noticed that in Peru, for example, there were thousands of potato varieties, while South and Central America had many different tomatoes and Central Asia saw a wide variety of carrots.

In Ethiopia, the diversity is in wheat — durum wheat in particular.

WATCH THE VIDEO HERE