Posts

In Ethiopia’s Wheat Diversity, the Seeds of a Wheat Rust Solution

With pathogens like Ug99 evolving and adapting quickly, a diverse agricultural gene pool is often the best insurance for the future.

Authors: Kerstin Hoppenhaus & Sibylle Grunze | Published: January 22, 2018

Ethiopia is one of the oldest cultivating regions not only for wheat, but also for other crops like coffee, millet, and barley. Over thousands of years, the environment and farmers have interacted by selecting and breeding in order to adjust old crop varieties to regional conditions. The result is a unique variety of crop variations, and today, Ethiopia is recognized worldwide as a center for genetic diversity.

The Russian botanist Nikolai Vavilov identified these centers as early as 1926. He noticed that in Peru, for example, there were thousands of potato varieties, while South and Central America had many different tomatoes and Central Asia saw a wide variety of carrots.

In Ethiopia, the diversity is in wheat — durum wheat in particular.

WATCH THE VIDEO HERE

Grocery Store Program Improves Farmers’ Adoption of Environmental Practices

Published: January 9, 2018

When grocery stores tout sustainable products, consumers may take their claims at face value. Yet few studies have analyzed whether or not companies who claim to improve the sustainability of their products are actually changing practices in their supply chains.

In a new study published online Dec. 22 in the journal Global Environmental Change, Stanford researchers carried out one of the first analyses of a company-led sustainability program in the food and agriculture space. Studying the agricultural supply chain of Woolworths Holding Ltd. (Woolworths), one of the five largest supermarket chains in South Africa, they found that its Farming for the Future program drove increased adoption of environmental practices at the farm level. Agriculture is one of the largest global environmental polluters, driving deforestation and contributing an estimated 30 percent of total greenhouse gas emissions.

“If indeed these company-led policies are effective and able to transform their entire supply chains, then they can potentially transform land-use practices worldwide and have a very positive impact on the environment,” said study co-author Eric Lambin, the George and Setsuko Ishiyama Provostial Professor in the School of Earth, Energy & Environmental Sciences (Stanford Earth). “Having this kind of evaluation done by independent researchers increases the confidence of the public in these private programs.”

Driving change or greenwashing?

The biggest challenge in evaluating the effects of food store sustainability programs has been gaining access to stores’ private data. For this reason, researchers have focused on certifications led by nongovernmental organizations and multi-stakeholder standards that offer open access to their data, such as FairTrade and the Rainforest Alliance.

“The real question here is, ‘Will companies’ sustainability efforts slow if they don’t have an NGO checking in on them? Will they be actually driving change or is it just greenwashing?'” said lead author Tannis Thorlakson, a doctoral student in Stanford Earth’s Emmett Interdisciplinary Program in Environment and Resources (E-IPER).

Several U.S.-based food retailers with company-led sustainability programs refused to grant Thorlakson access to their data. Eventually, the high-end South African grocery and clothing chain Woolworths gave access.

“It’s really hard to evaluate a company’s sustainability program because you need to know exactly who their suppliers are and how the program works,” Thorlakson said. “Woolworths provided a unique opportunity because they agreed to total academic freedom to evaluate their program and publish results.”

KEEP READING ON SCIENCE DAILY

Grocery Store Program Improves Farmers' Adoption of Environmental Practices

Published: January 9, 2018

When grocery stores tout sustainable products, consumers may take their claims at face value. Yet few studies have analyzed whether or not companies who claim to improve the sustainability of their products are actually changing practices in their supply chains.

In a new study published online Dec. 22 in the journal Global Environmental Change, Stanford researchers carried out one of the first analyses of a company-led sustainability program in the food and agriculture space. Studying the agricultural supply chain of Woolworths Holding Ltd. (Woolworths), one of the five largest supermarket chains in South Africa, they found that its Farming for the Future program drove increased adoption of environmental practices at the farm level. Agriculture is one of the largest global environmental polluters, driving deforestation and contributing an estimated 30 percent of total greenhouse gas emissions.

“If indeed these company-led policies are effective and able to transform their entire supply chains, then they can potentially transform land-use practices worldwide and have a very positive impact on the environment,” said study co-author Eric Lambin, the George and Setsuko Ishiyama Provostial Professor in the School of Earth, Energy & Environmental Sciences (Stanford Earth). “Having this kind of evaluation done by independent researchers increases the confidence of the public in these private programs.”

Driving change or greenwashing?

The biggest challenge in evaluating the effects of food store sustainability programs has been gaining access to stores’ private data. For this reason, researchers have focused on certifications led by nongovernmental organizations and multi-stakeholder standards that offer open access to their data, such as FairTrade and the Rainforest Alliance.

“The real question here is, ‘Will companies’ sustainability efforts slow if they don’t have an NGO checking in on them? Will they be actually driving change or is it just greenwashing?'” said lead author Tannis Thorlakson, a doctoral student in Stanford Earth’s Emmett Interdisciplinary Program in Environment and Resources (E-IPER).

Several U.S.-based food retailers with company-led sustainability programs refused to grant Thorlakson access to their data. Eventually, the high-end South African grocery and clothing chain Woolworths gave access.

“It’s really hard to evaluate a company’s sustainability program because you need to know exactly who their suppliers are and how the program works,” Thorlakson said. “Woolworths provided a unique opportunity because they agreed to total academic freedom to evaluate their program and publish results.”

KEEP READING ON SCIENCE DAILY

Video: ‘Marketplace Pressure Campaigns to Drive Regenerative Agriculture’ by Ronnie Cummins

Ronnie Cummins of Organic Consumers Association and Regeneration International talks building a regeneration movement in your local community at the Living Soils Symposium Montreal. Learn more about driving the transition to regenerative agriculture here

The Ground Beneath Our Feet

Published: December 4, 2017

During a major soil catastrophe — the Dust Bowl — President Franklin Roosevelt told state governors, “The nation that destroys its soil destroys itself.”

Still, we treat our soil like dirt. By growing food and storing carbon dioxide and water, the loam and peat that coats the earth sustains us all. In return, we till it, treat it with chemicals and generally walk all over it.

Without healthy soil, food becomes less nutritious and crops become harder to grow. If the crops aren’t healthy, then the 70 percent of the world’s fresh water that’s used for agriculture will be wasted.

2012 study found that about a third of the planet’s topsoil is degraded and that without action, the world will be out of soil suitable for farming within 60 years.

KEEP READING ON 1A

How Carbon Farming Could Halt Climate Change

Author: Laura Sayre | Published: August 10, 2017

We can’t say we weren’t warned. For years, scientists have argued that human civilization must prevent the planet’s average annual temperature from rising by more than 2 degrees Celsius—or face certain catastrophe. Once we pass that critical threshold, according to the Intergovernmental Panel on Climate Change, life on planet earth is going to be a lot less fun. Think droughts, floods, superstorms, food shortages, and widespread extinctions.

Now, as forest fires rage and Delaware-sized chunks break off from Antarctica, scientists have more grim news: We’re going to hit the two-degree mark by the end of this century. Even if we manage to cut carbon emissions drastically, it’s simply too late—with one big caveat. If we can find some way to suck excess greenhouse gasses out of the atmosphere, we may still avert the very worst catastrophes.

What’s the best way to do this? That’s still up for debate. A Bill Gates-backed startup, for instance, is experimenting with a factory-like facility that pumps CO2 out of the air, creating carbon pellets that can be buried underground or used for fuel. But a time-honored, low-tech solution may prove to be even more viable. It’s called “carbon farming,” and it’s exactly what it sounds like: using farms not only to grow food, but also to sequester carbon safely in the soil.

In some ways, farmers make unlikely climate heroes. Agriculture is a major contributor to global climate change, since the industry drives deforestation, relies heavily on fossil fuel-powered machinery, and raises methane-emitting livestock by the billions. But farms, when they’re managed properly, can also be formidable carbon sinks.

Think back to biology class: Plants absorb atmospheric carbon dioxide through photosynthesis, releasing oxygen in exchange. As crops grow, carbon is used to build plant tissues both above and below ground—from stems and leaves to seeds and roots, even root hairs and root exudates. Sequestering more carbon by planting more trees is readily recognized as a strategy for fighting climate change. But what happens underground is just as important: Plant materials that are left to accumulate and slowly decompose in the soil contribute to the formation of soil organic matter, a way of storing carbon in the soil over long periods of time.

KEEP READING ON NEW FOOD ECONOMY

Top Soil: A Catalyst for Better Health and Nutrition

Author: Tobias Roberts | Published: August 23, 2017

WHERE WE STAND WITHOUT SOIL

Everything begins and ends with the soil. Unfortunately, close to 70% of it has been lost since the dawn of the agricultural revolution. Since the onset of the Green Revolution only half a decade ago, we´re getting rid of it faster than ever. Besides the ecocide that the loss of topsoil entails, it also is a major threat to our health. Most foods grown by industrial agricultural methods on depleted soil are nothing more than empty food carcasses filled with chemically supplied nitrogen, potassium, and phosphorus.

Without healthy soil that includes dozens of other micronutrients as a result of the functioning soil food web, we´re simply not getting the nutrition we need, no matter how cosmetic our food supposedly looks.

THE LOSS OF OUR PLANET´S FERTILITY

It can be easy to be tricked into believing that we live in a world of abundance. Seeing the sheer magnitude of the corn harvest in Iowa, to name just one example, can make us feel like our food security is well provided for by combines, GPS-controlled tractors, and the thousands of other technologies of industrial agriculture. But below that seemingly abundant harvest, a serious problem is emerging. The Great Plains of the United States have been considered one of the most fertile areas of our earth. In some places, top soil reaches over 15 feet into the earth. But that apparently endless fertility has all but disappeared in recent years.

In 2014 alone, Iowa lost over 15 million tons of topsoil, mostly due to unsustainable industrial agricultural practices. That soil, along with the millions of pounds of chemical fertilizers and pesticides eventually make their way down the Mississippi River into the Gulf of Mexico. The excess nitrates and pollution from this runoff has led to a hypoxic zone in the Gulf of Mexico which is basically a dead area where no marine life can survive.

ECOLOGICAL DANGERS OF TOP SOIL LOSS

When the soil is gone, we as a species will be completely dependent on petroleum for creating chemical fertilizers give the plants we eat the nutrients they need to grow. The problem, of course, is that oil isn’t going to be around forever either. Peak oil is a moment in time when the maximum extraction of oil is reached, and some studies believe that we´re already reached that bleak milestone.

Our dependence on petroleum based agricultural inputs for fertility purposes, then, is simply unsustainable. Furthermore, without top soil to provide naturally occurring fertility, the use of chemical inputs is creating a host of ecological damages. Chemical fertilizers are almost all salt based leading to increased soil salinity. Though plants will grow with increased vigor initially, chemical fertilizers disrupt the natural soil cycle leading to eventual barrenness.

Top soil loss doesn’t only cause a serious challenge to our long term food security, but it also causes other serious ecological catastrophes. The run off of top soil increases pollution and sedimentation in our waterways causing serious population declines in certain species of fish. Also, lands without top soil are more prone to serious flooding and increased desertification. Already 10-20% of our planet´s drylands face desertification, and needless today, plants don´t grow well in deserts.

KEEP READING ON PERMACULTURE RESEARCH INSTITUTE

Five Indigenous Farming Practices Enhancing Food Security

Author: Eva Perroni | Published: August 9, 2107

On the 2017 International Day of the World’s Indigenous Peoples, the United Nations is celebrating the 10th anniversary of the Declaration on the Rights of Indigenous Peoples (UNDRIP). The Declaration, formally adopted in 2007, is an international human rights instrument that sets a standard for the protection of indigenous rights. UNDRIP addresses the most significant issues affecting indigenous peoples regarding their civil, political, social, economic, and cultural rights. It recognizes a range of fundamental freedoms of indigenous peoples including their right to self-determination, spirituality, language, lands, territories, resources, and free, prior, and informed consent.

Over the centuries, indigenous peoples have provided a series of ecological and cultural services to humankind. The preservation of traditional forms of farming knowledge and practices help maintain biodiversity, enhance food security, and protect the world’s natural resources. There are approximately 370 million indigenous peoples in the world occupying or using up to 22 percent of the global land area, which is home to 80 percent of the world’s biological diversity. The Declaration affirms that indigenous peoples have the right to own and develop their land and resources and to follow their own traditional ways of growing food.

To celebrate the 10th Anniversary of UNDRIP, Food Tank is highlighting five indigenous farming practices that have helped shape sustainable farming systems and practices all over the world.

1. Agroforestry

Agroforestry involves the deliberate maintenance and planting of trees to develop a microclimate that protects crops against extremes. Blending agricultural with forestry techniques, this farming system helps to control temperature, sunlight exposure, and susceptibility to wind, hail, and rain. This system provides a diversified range of products such as food, fodder, firewood, timber, and medicine while improving soil quality, reducing erosion, and storing carbon.

NGOs Green Hope Fund and Forestever initiated the Sustainable Indigenous Orchards Project in 2010 to fight deforestation and help improve the living and health conditions of Amazonian indigenous communities. Working with indigenous leaders across seven communities, the project works to diversify agricultural production, secure food security, and maintain and protect local biodiversity through agroforestry methods.

The Tropical Agricultural Research and Higher Education Center (CATIE) is dedicated to research and graduate education in sustainable agriculture and natural resource conservation throughout Latin America and the Caribbean. CATIE”s agroforestry research projects work to translate scientific findings into practices that small producers can apply on their farms to improve the production of ecosystem services and diversify crop production.

The Ghana Permaculture Institute has established several community tree nurseries to produce large numbers of trees that support reforestation and agroforestry farming projects. Working to support community-based sustainability, the institute provides education to small farmers on agroforestry techniques and planting combinations of fast-growing beneficial tree species.

KEEP READING ON FOOD TANK

Healthy Soil Microbes, Healthy People

Authors: Mike Amaranthus and Bruce Allyn | Published: June 11, 2013

We have been hearing a lot recently about a revolution in the way we think about human health — how it is inextricably linked to the health of microbes in our gut, mouth, nasal passages, and other “habitats” in and on us. With the release last summer of the results of the five-year National Institutes of Health’s Human Microbiome Project, we are told we should think of ourselves as a “superorganism,” a residence for microbes with whom we have coevolved, who perform critical functions and provide services to us, and who outnumber our own human cells ten to one. For the first time, thanks to our ability to conduct highly efficient and low cost genetic sequencing, we now have a map of the normal microbial make-up of a healthy human, a collection of bacteria, fungi, one-celled archaea, and viruses. Collectively they weigh about three pounds — the same as our brain.

 

Now that we have this map of what microorganisms are vital to our health, many believe that the future of healthcare will focus less on traditional illnesses and more on treating disorders of the human microbiome by introducing targeted microbial species (a “probiotic”) and therapeutic foods (a “prebiotic” — food for microbes) into the gut “community.” Scientists in the Human Microbiome Project set as a core outcome the development of “a twenty-first century pharmacopoeia that includes members of the human microbiota and the chemical messengers they produce.” In short, the drugs of the future that we ingest will be full of friendly germs and the food they like to eat.

 

The single greatest leverage point for a sustainable and healthy future for the seven billion people on the planet is arguably immediately underfoot: the living soil, where we grow our food. But there is another major revolution in human health also just beginning based on an understanding of tiny organisms. It is driven by the same technological advances and allows us to understand and restore our collaborative relationship with microbiota not in the human gut but in another dark place: the soil.

Just as we have unwittingly destroyed vital microbes in the human gut through overuse of antibiotics and highly processed foods, we have recklessly devastated soil microbiota essential to plant health through overuse of certain chemical fertilizers, fungicides, herbicides, pesticides, failure to add sufficient organic matter (upon which they feed), and heavy tillage. These soil microorganisms — particularly bacteria and fungi — cycle nutrients and water to plants, to our crops, the source of our food, and ultimately our health. Soil bacteria and fungi serve as the “stomachs” of plants. They form symbiotic relationships with plant roots and “digest” nutrients, providing nitrogen, phosphorus, and many other nutrients in a form that plant cells can assimilate. Reintroducing the right bacteria and fungi to facilitate the dark fermentation process in depleted and sterile soils is analogous to eating yogurt (or taking those targeted probiotic “drugs of the future”) to restore the right microbiota deep in your digestive tract.

The good news is that the same technological advances that allow us to map the human microbiome now enable us to understand, isolate, and reintroduce microbial species into the soil to repair the damage and restore healthy microbial communities that sustain our crops and provide nutritious food. It is now much easier for us to map genetic sequences of soil microorganisms, understand what they actually do and how to grow them, and reintroduce them back to the soil.

Since the 1970s, there have been soil microbes for sale in garden shops, but most products were hit-or-miss in terms of actual effectiveness, were expensive, and were largely limited to horticulture and hydroponics. Due to new genetic sequencing and production technologies, we have now come to a point where we can effectively and at low cost identify and grow key bacteria and the right species of fungi and apply them in large-scale agriculture. We can produce these “bio fertilizers” and add them to soybean, corn, vegetables, or other crop seeds to grow with and nourish the plant. We can sow the “seeds” of microorganisms with our crop seeds and, as hundreds of independent studies confirm, increase our crop yields and reduce the need for irrigation and chemical fertilizers.

These soil microorganisms do much more than nourish plants. Just as the microbes in the human body both aid digestion and maintain our immune system, soil microorganisms both digest nutrients and protect plants against pathogens and other threats. For over four hundred million years, plants have been forming a symbiotic association with fungi that colonize their roots, creating mycorrhizae (my-cor-rhi-zee), literally “fungus roots,” which extend the reach of plant roots a hundred-fold. These fungal filaments not only channel nutrients and water back to the plant cells, they connect plants and actually enable them to communicate with one another and set up defense systems. A recent experiment in the U.K. showed that mycorrhizal filaments act as a conduit for signaling between plants, strengthening their natural defenses against pests. When attacked by aphids, a broad bean plant transmitted a signal through the mycorrhizal filaments to other bean plants nearby, acting as an early warning system, enabling those plants to begin to produce their defensive chemical that repels aphids and attracts wasps, a natural aphid predator. Another study showed that diseased tomato plants also use the underground network of mycorrhizal filaments to warn healthy tomato plants, which then activate their defenses before being attacked themselves.

Thus the microbial community in the soil, like in the human biome, provides “invasion resistance” services to its symbiotic partner. We disturb this association at our peril. As Michael Pollan recently noted, “Some researchers believe that the alarming increase in autoimmune diseases in the West may owe to a disruption in the ancient relationship between our bodies and their ‘old friends’ — the microbial symbionts with whom we coevolved.”

KEEP READING ON THE ATLANTIC

Sustainable Agriculture Can Mitigate Climate Change and Involuntary Migration

Author: UN Food and Agriculture Organisation | July 6, 2017 

Climate change poses a major risk for rural people in developing countries, often leading to distress-driven migration, and bolstering sustainable agriculture is an essential part of an effective policy response, FAO Director-General José Graziano da Silva said today.

Citing figures showing that since 2008 one person has been displaced every second by climate and weather disasters – an average of 26 million a year – and suggesting the trend is likely to intensify in the immediate future as rural areas struggle to cope with warmer weather and more erratic rainfall, he said the “solution to this great challenge” lies in bolstering the economic activities that the vast majority of rural populations are already engaged in.

Graziano da Silva and William Lacy Swing, Director-General of the International Organization for Migration (IOM), spoke at a meeting during FAO’s Conference.

“Although less visible than extreme events like a hurricane, slow-onset climate change events tend to have a much greater impact over time,” Swing said, citing the drying up over 30 years of Lake Chad, now a food crisis hotspot. “Many migrants will come from rural areas, with a potentially major impact on agricultural production and food prices.”

KEEP READING ON REUTERS