Posts

México diseña un método revolucionario para revertir la degradación de las tierras semiáridas

  • La degradación de la tierra está afectando a las tierras agrícolas de todo el mundo, afectando a casi el 40% de la población mundial. Revertir ese proceso y restaurar estas tierras de cultivo y pastos para que alcancen un nivel de productividad máximo es un gran desafío al que se enfrenta la humanidad, especialmente a medida que la sequía inducida por el cambio climático se apodera de más tierras áridas y semiáridas.
  • En México, un agricultor ideó una solución innovadora nunca antes probada que no sólo restablece la productividad de la tierra degradada, sino que también mejora en gran medida el almacenamiento de carbono en el suelo, da visibilidad a un cultivo muy valioso e incluso ofrece una esperanzadora opción de alimento para diabéticos.
  • El proceso utiliza dos plantas muy comunes en estas tierras semiáridas y que crecen bien en condiciones de sequía, el agave y el mezquite. Ambos se siembran de manera intercalada y luego el agave se fermenta y se mezcla con el mezquite para producir un forraje excelente, económico y muy comercializable para los animales de pastoreo.
  • Esta nueva técnica está teniendo éxito en México y podría aplicarse a todas las tierras degradadas del mundo. Es, dice un experto, “uno de los programas de regeneración de suelos más grandes de la Tierra … implementado en tierras degradadas, básicamente sobre pastoreadas e inadecuadas para el cultivo, sin necesidad de irrigación o insumos químicos”.

 

La degradación de la tierra es reconocida como uno de los problemas ambientales más devastadores del mundo, con aproximadamente una cuarta parte de la superficie terrestre total del mundo ya degradada, según el Fondo para el Medio Ambiente Mundial (FMAM). Este cambio adverso en el uso de la tierra ha dañado seriamente los medios de vida de más de 3.000 millones de personas, casi el 40% de la población mundial, al mismo tiempo que exacerba el cambio climático debido a la liberación de carbono secuestrado en el suelo por mucho tiempo y óxido nitroso, un poderoso gas de efecto invernadero, a la atmósfera.

El futuro pinta aún peor. Los científicos advierten que cada año se pierden 24.000 millones de toneladas de suelo fértil, en gran parte debido a las prácticas agrícolas insostenibles. Si esta tendencia continúa, dicen, el 95% de la superficie terrestre de la Tierra podría degradarse para 2050, una situación peligrosamente insostenible.

Sin embargo, existen soluciones prácticas, según Gary Nabhan, profesor de la Universidad de Arizona y uno de los principales expertos mundiales en agricultura en tierras áridas. “Durante los últimos 50 años, la mayoría de los proyectos de desarrollo rural verticalistas han fracasado terriblemente”, explica. “Pero hay personas que están probando nuevas ideas al margen de la agricultura convencional y es de allí donde provienen todas las innovaciones duraderas en la agricultura. Tenemos que escucharlos ”.

Una mujer cuidando una planta de agave en las tierras degradadas de México. Cuando el agave alcanza este tamaño, las plantas requieren mantenimiento. La mujer está podando pencas viejas y dañadas, quitando la “descendencia”, para que la planta madre conserve energía. Luego planta los hijuelos en otro lugar. Imagen cortesía de Alejandro Vasconcelos.

 

La necesidad es la madre de la invención

Una de esas soluciones está surgiendo en el estado de Guanajuato, en el centro de México. Ciertamente se necesitan nuevas ideas en esta nación latinoamericana que enfrenta una severa sequía inducida por el cambio climático, que actualmente afecta al 85% del país. En las últimas semanas, las lluvias trajeron algo de alivio a Guanajuato, aunque muchas otras partes del país siguen resecas.

Pero incluso cuando las precipitaciones finalmente se extienden al resto de México, las perspectivas para los agricultores no son buenas. Según Rafael Sánchez, experto en agua de la Universidad Autónoma de Chapingo, los acuíferos están completamente agotados. “No tengo ninguna duda de que en 2022 habrá una crisis, una gran crisis”, advirtió, anticipándose al malestar social.

Los más afectados por las sequías en México son las familias campesinas, muchas de las cuales trabajan en tierras comunales, conocidas como ejidos. La mayoría de los ejidos ya son económicamente inviables y, para algunos, una mayor sequía podría ser, paradójicamente, la gota que haga colmar el vaso.

Cada vez más agricultores podrían verse obligados a abandonar sus tierras, y los hombres emprenderán el peligroso viaje hacia el norte hasta la frontera estadounidense ahora cerrada con la esperanza de ganar dinero en efectivo para enviar a casa, mientras que las mujeres, los ancianos y los niños sobreviven en granjas arruinadas. Sin las remesas de la familia en los EE. UU., muchas de estas granjas habrían desaparecido hace mucho tiempo.

A principios de este año, miembros de la comunidad del Ejido Los Toriles pasaron un día en La Huizachada, el ejido de Doña Juana (vestida de rosa), para asistir a un taller sobre “La prevención, detección y tratamiento de plagas y enfermedades del agave”. El evento fue organizado por un grupo comunitario, Somos Mezcaleros, y dirigido por el agricultor y agrónomo Alejandro Vasconcelos. Imagen cortesía de Alejandro Vasconcelos.

Ahora, una nueva iniciativa ofrece una solución para estas familias. Es una iniciativa no de una empresa de alta tecnología o del gobierno, sino de un agricultor local, José Flores González, quien, con sus dos hermanos, maneja una finca en el municipio de Luis de La Paz, que limita con San Miguel de Allende. Su finca una vez cubrió 1.000 hectáreas (alrededor de 2.500 acres), pero poco a poco la familia se vio obligada a vender parcelas, hasta que se quedaron con una décima parte de su tamaño original.

Como tantos otros, los tres hermanos buscaron empleo fuera de su granja. Flores González estudió ingeniería mecánica y se convirtió en profesor en una universidad local.

Con el paso de los años, la situación de degradación de la tierra y sequía en la vasta región semiárida empeoró. Con pocas opciones, las familias pastorearon en exceso sus pastos, tratando de exprimir el sustento de subsistencia que podían, agotando aún más la tierra. Francisco Peyret, director de medio ambiente y sustentabilidad del municipio de San Miguel de Allende, dice que la magnitud del desastre es evidente para todos: “Algunas de las áreas por aquí parecen ser de Marte. Realmente no tienen suelo “.

Creciendo por todas partes: “el forraje más barato del mundo”

Flores González era consciente de  los apremios económicos en los  que se encontraba no solo su familia sino también sus vecinos. Pero no se desesperó. En cambio, trabajó para sacar provecho de su formación académica y aprovechar los peculiares hábitos de crecimiento de las pocas plantas resistentes que florecen en las tierras secas y degradadas de la región. Finalmente, encontró una manera de restaurar el ecosistema y potencialmente reactivar la economía de la comunidad agrícola campesina.

Ronnie Cummins, fundador de la Asociación de Consumidores Orgánicos, que  vive parte del año en San Miguel de Allende trabajando con Vía Orgánica, integrante de la ONG Regeneration International, recuerda su repentina emoción cuando se dio cuenta de lo que Flores González había imaginado.

“Estábamos impartiendo un taller sobre composta” en 2019, recuerda Cummins. “Se me acercó un científico, Juan Frías, y me dijo que tres hermanos habían desarrollado un nuevo y revolucionario sistema de cultivo intercalado de agave con árboles de mezquite para producir “el forraje más barato del mundo’, que también era capaz de secuestrar “carbono del aire.” Parecía casi demasiado bueno para ser verdad, pero Flores González había descubierto algo bastante nuevo.

Ronnie Cummins frente a las plantas de agave que su organización, Vía Orgánica, parte de Regeneration International, está animando a los campesinos a cultivar. Imagen cortesía de Vía Orgánica.

 

El agave y el mezquite son plantas nativas muy comunes en las tierras semiáridas de México. Las poblaciones indígenas han usado el agave tal vez durante milenios, convirtiéndolo en bebidas alcohólicas como el tequila, el pulque y el mezcal. Las vainas de mezquite se han utilizado tradicionalmente para hacer atole, una bebida popular durante las festividades del Día de Muertos en México.

Las dos plantas sobreviven en el desierto de formas muy diferentes. Los agaves, conocidos como maguey en México, tienen sistemas radiculares poco profundos y extraen la humedad directamente del aire, almacenándola en sus hojas gruesas y espinosas, conocidas como pencas. A diferencia de muchas plantas, absorben la mayor parte del dióxido de carbono por la noche. Esto significa que se evapora mucha menos agua de las hojas a través de la transpiración, lo que permite que la planta produzca cantidades significativas de biomasa, incluso en condiciones donde la disponibilidad de agua es severamente restringida y de sequía prolongada.

Por el contrario, los mezquites, el nombre común de varias plantas del género Prosopis, tienen raíces extremadamente largas y buscan agua en las profundidades del subsuelo. Como leguminosa, son una de las pocas plantas en el desierto que capturan nitrógeno del aire y, como resultado, mejoran la fertilidad del suelo.

Los agaves contienen saponinas y lectinas altamente indigeribles, un recurso de la naturaleza para proteger las plantas de los depredadores, por lo que los agricultores nunca han podido lograr que sus animales se coman fácilmente las pencas. En el mejor de los casos, las secan, de manera que pierden todos los valiosos nutrientes que se encuentran en el líquido de sus hojas, y luego mezclan la materia vegetal restante con otros forrajes.

Murales de temática agrícola en la pared  de Vía Orgánica en San Miguel de Allende, México. Imágenes cortesía de Vía Orgánica.

 

Una semana después de conocer a Frías, Cummins y otras personas de Vía Orgánica vieron a un grupo de ovejas y cabras devorar pencas y vainas de mezquite en la finca de Flores González. “Se lo comían como si fuera un caramelo. ¡Fue increíble!” exclama.

Cuando más tarde visitó la granja, Nabhan estaba igualmente asombrado. Recuerda: “antes de que pudieran abrir las puertas, los perros pastores entraron corriendo e [incluso ellos] empezaron a comer el agave fermentado y el mezquite y, una vez que las puertas se abrieron, hubo un frenesí alimenticio. ¡Al ganado le encantó! “

La explicación del extraordinario cambio en la conducta alimentaria es el uso, de nuevo, de un proceso casi tan antiguo como la agricultura. Flores González había descubierto que la fermentación podía convertir las pencas de agave en un forraje digerible. “Pican finamente las pencas y las ponen en recipientes herméticos durante un mes o mes y medio. Las pencas fermentan y se vuelven digeribles ”, explica Cummins. “Estos agricultores habían descubierto algo que nadie más había hecho, ni siquiera los indígenas”.

El método de Flores González, que él llama Sistema Agroforestal Zamarripa, intercala agave con mezquite. Cummins dice que las dos plantas crecen bien juntas: “El mezquite, u otros árboles fijadores de nitrógeno como el huizache o la acacia, fijan el nitrógeno y los nutrientes en el suelo y el agave los utiliza para crecer y producir cantidades significativas de forraje animal.”

Las plantas ni siquiera necesitan riego, y esto es una enorme ventaja. Guanajuato solo recibe 500 milímetros (20 pulgadas) de precipitación en una “temporada de lluvias” promedio de julio a octubre. A eso le siguen ocho meses con poca o ninguna lluvia. La mayoría de los agricultores se las arreglan con la lluvia que pueden recolectar y almacenar.

El abundante suministro de ingredientes básicos y la simplicidad del nuevo proceso hacen que el forraje sea extremadamente barato, con un costo de producción de solo 5 centavos de dólar por kilogramo (alrededor de 2 centavos por libra), mucho más barato que la alfalfa o el heno que los agricultores suelen utilizar como forraje. Es importante destacar que el proceso de agave-mezquite es un gran paso para hacer viable nuevamente la agricultura campesina a pequeña escala en el México semiárido. Y como beneficio adicional, podría reducir el éxodo de refugiados climáticos que llegan a Estados Unidos.

José Flores González y su familia junto a una planta de agave. Imagen cortesía de José Flores González

En 2019 y 2020, miembros de la comunidad del Ejido Los Toriles, con la ayuda de un especialista en comunidades, manejo, recuperación de suelos y reforestación, construyeron barreras de piedra, conocidas como gaviones. Estas barreras detendrán la escorrentía de la cuenca después de las fuertes lluvias, lo que permitirá que la tierra y la vegetación comiencen a acumularse en el gavión, lo que resultará en la recuperación del suelo. Como muestra la foto, los agaves también se plantan en lugares estratégicos para fijar el suelo en su lugar con mayor firmeza. Imagen cortesía de Alejandro Vasconcelos.

 

Resistencia local a lo nuevo, luego aceptación lenta

Aún así, a Flores González no le ha resultado fácil lograr que los agricultores tradicionales acepten su innovación. “Hemos estado promoviendo enérgicamente la idea durante cuatro años pero, lamentablemente, sin mucho éxito”, lamenta.

Ercila Sahores, directora para América Latina de Regeneration International , admite que es difícil superar actitudes arraigadas: “Los campesinos han creído durante siglos que el agave no es digerible”.

Además, el control comunitario de la tierra hace que este proceso deva hacerse con tiempo: “Muchos campesinos trabajan en tierras colectivas, donde el cambio tiene que introducirse por consenso y esto lleva tiempo”, dice Sahores.

Quizás el mayor problema de todos es que gran parte de la tierra local está ahora tan degradada que la reforestación, incluso con agave y mezquite, es un proceso lento y tedioso.

Sin embargo, en los últimos dos años, gracias a la creciente participación de Vía Orgánica, otras ONG y el gobierno municipal de San Miguel de Allende, la implementación de este sistema ya es una realidad.

Campesinos, principalmente mujeres, cuidando el agave. Con la escalada de la crisis económica rural en pleno apogeo, muchos hombres no tienen más remedio que emigrar a los Estados Unidos, donde esperan poder encontrar trabajo y enviar dinero a sus familias. Muchas mujeres se quedan a cargo de las granjas, con la ayuda de ancianos y niños. Imagen cortesía de Alejandro Vasconcelos.

 

“Nosotros, el gobierno municipal, trabajamos con las comunidades”, explica Peyret. “Vamos a los ejidos y ellos deciden lo que quieren restaurar. Hace mucho que son conscientes de la urgente necesidad de restaurar la tierra, pero por sí solos no han tenido los recursos para llevar a cabo este trabajo “.

Una vez que los campesinos deciden en comunidad en qué área trabajar, se comprometen a no pastorear a sus animales allí durante varios años. Peyret continúa: “El agave es una de las primeras cosas que plantamos. Se siente cómodo en los peores lugares y en las peores condiciones, incluso en una fuerte sequía, como hemos tenido este año. Incluso si lo plantas sobre una roca donde casi no hay suelo, crecerá con mucha más fuerza que en una tierra cultivable en un área plana. De hecho, la gente dice ‘haz sufrir al agave’ porque tendrás un mejor resultado “.

El gobierno brinda incentivos a los campesinos: trabajos temporales, la posibilidad de reconstruir sus huertas, la donación de plantas y árboles nativos, incluido el agave, y la construcción de sistemas de captación de agua.

Los campesinos también están interesados ​​en cultivar agave, aunque muchos de ellos aún se muestren escépticos sobre el nuevo proceso de fermentación, porque saben que, después de una década más o menos de cultivarlo, podrán producir pulque, una bebida fermentada tradicional elaborada fermentando la savia de agave, conocida como aguamiel. Mucho antes de eso, pueden comenzar a experimentar con el proceso de fermentación. La aceptación ahora se está extendiendo.

Recipientes utilizados para fermentar el agave en la finca ecológica Cañada de la Virgen. Imagen cortesía de Alejandro Vasconcelos.

Expansión de la producción de forraje de agave y mezquite

Una red de ONGs, coordinada por el gobierno municipal, ha organizado el Plan de Acción Climática. Juntos, están combatiendo la erosión del suelo y promoviendo el Sistema Agroforestal Zamarripa. Peyret estima que los agricultores comunitarios ya han restaurado unas 1.500 hectáreas (3.700 acres). Pero eso es solo el comienzo.

Alejandro Vasconcelos, agricultor recibido en agricultura sostenible y ecológica, se ha convertido en capacitador del programa. “He capacitado a más de 400 agricultores del estado de Guanajuato y otros 100 de otros estados. La gran mayoría son muy pobres y no tienen acceso al riego”. Está muy entusiasmado: “La fermentación produce forrajes que cuestan solo 1 peso mexicano el kilo. Y, una vez que los agricultores se dan cuenta de que pueden engordar su ganado de una manera tan barata, aceptan totalmente la tecnología”.

Cummins está de acuerdo. “Nuestro centro recibió la visita de 30 agricultores de Tlaxcala [otro estado del centro de México]. Tan pronto como vieron a los animales comerse las pencas picadas, fue como si se hubiera encendido una bombilla. Al día siguiente ordenaron cinco máquinas [de fermentación] [de Flores González]. Cuando se dieron cuenta de que iba a haber un retraso, encargaron otra máquina a la industria del tequila y le modificaron las cuchillas [para usarla con el agave]. Luego comenzaron a darles forraje a sus burros, ovejas y cabras, y tuvieron mucho éxito”.

Alejandro Vasconcelos con sus hijos. Vasconcelos ha jugado un papel clave en la promoción del sistema de fermentación del agave. Imagen vía Facebook.

Participantes de un curso de “Introducción al Agave” realizado en el estado de Guanajuato, y que incluye a la comunidad de San Miguel de Allende. Solo tres o cuatro participantes provienen de la misma comunidad, por lo que los agricultores pueden regresar a casa y enseñar a sus vecinos. Los agricultores escuchan sobre los orígenes del agave y son capacitados para aumentar sus ingresos provenientes del cultivo del agave, con todas las técnicas basadas en una forma de policultivo ecológico. Imagen cortesía de Alejandro Vasconcelos.

 

Vía Orgánica espera que los agricultores puedan diversificarse a largo plazo. “La carne de animales alimentados con las pencas puede certificarse como orgánica y biodinámica”, explica Cummins. “El cordero orgánico puede alcanzar un precio elevado. Y luego está el colágeno, el caldo de huesos, etc. ” Un futuro brillante se avecina, si la iniciativa puede establecerse en esta tierra completamente seca.

Este esfuerzo trae otros beneficios significativos a los agricultores, aunque no conlleven rendimientos económicos inmediatos. Una ventaja es la capacidad del agave para secuestrar carbono. Según Cummins, la agrosilvicultura basada en agave, con 2.000 agaves por hectárea, puede almacenar alrededor de 73,6 toneladas de carbono en la superficie del suelo durante un período de 10 años, sin contar el carbono almacenado por árboles o arbustos acompañantes como mezquites y acacias.

Ha hecho otros cálculos interesantes y de gran alcance: “Este sistema tiene la capacidad de secuestrar el 100% de las emisiones actuales [anuales] de gases de efecto invernadero de México (590 millones de toneladas de CO2) si se implementa en aproximadamente 1,1% o 2,2 millones de hectáreas (5,4 millones acres) de la masa terrestre total de la nación”. Es, dice, “uno de los programas de suelo más regenerativos en la Tierra, especialmente considerando el hecho de que se puede implementar en tierras degradadas, básicamente sobrepastoreadas e inadecuadas para cultivos, sin necesidad de irrigación o insumos químicos”.

Nabhan señala otro beneficio. “México tiene ahora la tasa más alta de diabetes de aparición tardía de todos los países del mundo, y la obesidad infantil alcanzará tasas aún más altas en el futuro”, dice. El agave y el mezquite podrían ser parte de la solución. Contienen una sustancia química llamada inulina, que promueve la salud digestiva al tratarse de un prebiótico que ayuda a las bacterias intestinales buenas, dice.

“No solo tiene un alimento para animales barato y nutritivo, sino también una forma de combatir la diabetes”, concluye Nabhan. Esto podría ahorrarle millones de dólares al servicio de salud de México, dice.

Nabhan señala que la agricultura campesina en México ha estado en declive durante más de medio siglo. “Ver la posibilidad de renovación es casi como un milagro”, exclama.

El potencial es tan grande para el proceso de fermentación de agave-mezquite que ya se está implementando en otra región y nación azotada por la sequía: justo al norte de la frontera entre México y los EE. UU., en el estado de Arizona. Pero Nabhan piensa que el proyecto avanzará más rápidamente en México: “Si la necesidad y el hambre agudizan el ingenio, la presión sobre Ronnie y el Sistema Agroforestal de Agave Zamarripa rema a su favor. Las personas necesitan una alternativa porque no pueden cultivar o criar ganado como lo hacían en el pasado. Lo que proponen es realmente una de las únicas formas de salir de esta encrucijada”.

Cummins cree que el Sistema Agroforestal Zamarripa de Flores González podría aplicarse en muchas otras partes del mundo. “Creemos que la agrosilvicultura está a la vanguardia de la regeneración agrícola. Aproximadamente el 40% del terreno del mundo es árido o semiárido y en la mitad de estas áreas ya están creciendo diferentes variedades de agave y árboles nativos fijadores de nitrógeno. Las posibilidades son inmensas “. Las opciones para combatir la degradación del suelo son escasas, así que muchos agricultores y naciones seguirán el experimento de Guanajuato con gran interés.

Cummins cree que el Sistema Agroforestal Zamarripa de Flores González podría aplicarse en otras partes del mundo y que la agrosilvicultura está a la vanguardia de la regeneración agrícola.

Publicado y traducido con permiso de Mongabay

Mexico Devises Revolutionary Method to Reverse Semiarid Land Degradation

  • Land degradation is impacting farmlands worldwide, affecting almost 40% of the world’s population. Reversing that process and restoring these croplands and pastures to full productivity is a huge challenge facing humanity — especially as climate change-induced drought takes greater hold on arid and semiarid lands.
  • In Mexico, a university-educated, small-scale peasant farmer came up with an untried innovative solution that not only restores degraded land to productivity, but also greatly enhances soil carbon storage, provides a valuable new crop, and even offers a hopeful diet for diabetics.
  • The process utilizes two plants commonly found on semiarid lands that grow well under drought conditions: agave and mesquite. The two are intercropped and then the agave is fermented and mixed with the mesquite to produce an excellent, inexpensive, and very marketable fodder for grazing animals.
  • The new technique is achieving success in Mexico and could be applied to global degraded lands. It is, says one expert “among the most soil regenerative schemes on Earth … deployed on degraded land, basically overgrazed and unsuitable for growing crops, with no irrigation or chemical inputs required whatsoever.”

Land degradation is recognized as one of the world’s most pressing environmental problems, with about a quarter of the world’s total land area already degraded, according to the Global Environment Facility (GEF). This adverse land use change has seriously harmed the livelihoods of more than 3 billion people, almost 40% of the world’s population, while exacerbating climate change due to the release of long-sequestered soil carbon and nitrous oxide — a powerful greenhouse gas — into the atmosphere.

Worse may lie ahead. Scientists warn that 24 billion tons of fertile soil are being lost each year, largely due to unsustainable agriculture practices. If this trend continues, they say, 95% of Earth’s land area could be degraded by 2050 — a dangerously unsustainable situation.

However, practical solutions exist, according to Gary Nabhan, a professor at the University of Arizona and one of the world’s leading experts on farming on arid land. “Over the last 50 years, most top-down rural development projects, have failed terribly,” he explains. “But there are guys trying out new ideas at the margins of conventional agriculture, which is where all lasting innovations in agriculture come from. We have to listen to them.”

A woman tending to an agave plant on Mexico’s degraded lands. When agave grows to this size, the plants require maintenance. The woman is pruning old and damaged pencas, removing “offspring,” so that the mother plant will conserve energy. she then plants the seedlings elsewhere. Image courtesy of Alejandro Vasconcelos.

Troubled times are the mother of invention

One such solution is emerging in Guanajuato state in central Mexico. New ideas are certainly needed in this Latin American nation as it faces climate change-induced severe drought, which is currently affecting 85% of the country. In recent weeks, the rains brought some relief to Guanajuato, though many other parts of the country remain parched.

But even when precipitation eventually does spread to the rest of Mexico, prospects for small-scale farmers are not good. According to Rafael Sánchez, a water expert at the Autonomous University of Chapingo, aquifers are completely depleted. “I have no doubt that in 2022 there will be a crisis, a great crisis,” he warned, anticipating social unrest.

Worst hit by Mexico’s deepening droughts are peasant farm families, many of them working on communal land, known as ejidos. Most ejidos are already economically unviable, and for some, further drought could be the final straw.

More and more farmers could be forced to leave their land, with the men undertaking the dangerous journey north to the now-closed U.S. border in the hopes of earning cash to send home, while women, old people and children struggle on with failing farms. Without remittances from family in the U.S., many of these farms would have gone bankrupt long ago.

Earlier this year, Ejido Los Toriles community members spent a day in La Huizachada, the ejido belonging to Doña Juana (dressed in pink), to attend a workshop on “The prevention, detection and treatment of agave pests and diseases.” The event was set up by a community group, Somos Mezcaleros, and led by farmer and agronomist Alejandro Vasconcelos. Image courtesy of Alejandro Vasconcelos.

Now a new initiative offers a way forward to these families. It is the brainchild not of a high-tech company or government, but of a local farmer, José Flores Gonzalez, who, with his two brothers, runs a farm in the municipality of Luis de La Paz, which borders San Miguel de Allende. Their farm once covered 1,000 hectares (about 2,500 acres), but little by little the family was forced to sell parcels, until they were left with a tenth of its original size.

Like so many others, the three brothers sought employment away from their farm. Flores Gonzalez studied mechanical engineering and became a lecturer at a local university.

As the years passed, the land degradation and drought situation in the vast semiarid region worsened. With few options, families overgrazed their pastures, trying to squeeze out what subsistence livelihood they could — wearing out the land even more. Francisco Peyret, the San Miguel de Allende municipality environment and sustainability director, says the scale of the calamity is evident to everyone: “Some of the areas around here look as if they’re on Mars. They really have no soil.”

Growing all around: ‘The world’s cheapest fodder’

Flores Gonzalez lamented a predicament that had become desperate not only for his family but his neighbors. But he didn’t despair. Instead, he worked to take advantage of his academic training and harness the peculiar growing habits of the few hardy plants that flourish on the region’s dry, degraded lands. Eventually he found a way to restore the ecosystem and potentially revive the peasant farm community economy.

Ronnie Cummins, founder of the Organic Consumers Association — who today spends most of the year in San Miguel de Allende working with Via Orgânica, the Mexican branch of the NGO Regeneration International — remembers his sudden excitement when he realized what Flores Gonzalez had envisioned.

“We were teaching a workshop on compost” in 2019, Cummins recalls. “Afterwards a scientist, Juan Frias, came up to me and told me that three brothers had developed a revolutionary new system of intercropping agave with mesquite trees to produce ‘the world’s cheapest fodder,’” which was also able to sequester “carbon from the air.” It seemed almost too good to be true, but Flores Gonzalez had discovered something quite new.

Ronnie Cummins standing in front of agave plants that his organization, Via Orgânica, the Mexican branch of Regeneration International, is encouraging peasant farmers to grow. Image courtesy of Via Orgânica.

Agave and mesquite are both common native plants to Mexico’s semiarid lands. Indigenous populations have used agave maybe for millennia, making alcoholic beverages out of it, such as tequila, pulque and mescal. Mesquite pods have traditionally been used to make atole, a beverage popular during Mexico’s Day of the Dead festivities.

The two plants survive in the desert in very different ways. Agaves, known as maguey in Mexico, have shallow root systems and draw moisture directly from the air, storing it in their thick, thorny leaves, known as pencas. Unlike a lot of plants, they absorb most of their carbon dioxide at night. This means that far less water evaporates off the leaves through transpiration, allowing the plant to produce significant amounts of biomass, even under conditions of severely restricted water availability and prolonged drought.

In contrast, mesquites, the common name for several plants in the genus Prosopis, have extremely long roots and seek water deep underground. As a legume, they are one of the few plants in the desert to capture nitrogen from the air, and are able as a result to replenish soil fertility.

Agaves contain highly indigestible saponins and lectins, developed by nature to protect the plants from predators, so farmers have never been able to get their animals to readily eat the pencas. At best, they have dried them, thus losing all the precious nutrients contained in the liquid in their leaves, and then mixed the remaining plant matter with other fodder.

Agricultural murals on the wall in Via Orgânica’s headquarters in San Miguel de Allende, Mexico. Images courtesy of Via Orgânica.

A week after meeting Frias, Cummins and others from Via Orgânica watched a group of sheep and goats gobbling down pencas and mesquite pods at Flores Gonzalez’ farm. “They were eating it like it was candy. It was amazing!” he exclaims.

When he later visited the farm, Nabhan was just as stunned. He remembers: “Before they could even open the gates, the sheep dogs ran in and [even they] started eating the fermented agave and mesquite and, once the gates were open, there was a feeding frenzy. The livestock loved it so much!”

The explanation for the extraordinary change in eating behavior is a new use for a process nearly as ancient as agriculture. Flores Gonzalez had discovered that fermentation could turn the agave pencas into a digestible fodder. “They chop up the pencas finely and put them in sealed-up containers for a month or a month and a half. The pencas ferment and become digestible,” Cummins explains. “These farmers had figured out something that no one else had ever done, including the Indigenous.”

Flores Gonzalez’ method, which he calls the Agroforestry Zamarripa System, intercrops agave with mesquite. Cummins says the two plants grow well together: “The mesquite, or other nitrogen-fixing trees such as huizache or acacia, fix the nitrogen and nutrients into the soil and the agave draws upon them in order to grow and produce significant amounts of animal forage.”

The plants don’t even need to be irrigated, an enormous advantage. Guanajuato only gets 500 millimeters (20 inches) of precipitation in an average July-October “rainy season.” That’s followed by eight months with little or no rain. Most farmers make do with the rain they can collect and store.

The plentiful supply of basic ingredients and the simplicity of the new process makes the fodder extremely cheap, costing just 5 U.S. cents per kilogram to produce (about 2 cents per pound), far cheaper than the alfalfa or hay farmers often use for forage. Importantly, the agave-mesquite process is a big step toward making small-scale peasant farming viable again in semiarid Mexico. And as a bonus, it could reduce the exodus of climate refugees streaming to the U.S.

José Flores González next to an agave plant with his family. Image courtesy of José Flores González.
In 2019 and 2020, members of the Ejido Los Toriles community — aided by a community, management, soil recovery and reforestation specialist — built stone barriers, known as gaviones. These barriers will stem runoff from the watershed after heavy rain, allowing earth and vegetation to start accumulating in the gavion, resulting in soil recuperation. As the photo shows, agaves are also planted in strategic places to fix the soil in place more firmly. Image courtesy of Alejandro Vasconcelos.

Local resistance to the new, then slow acceptance

Still, Flores Gonzalez has not found it easy to get traditional farmers to accept his innovation. “We’ve been energetically promoting the idea for four years but, unfortunately, without great success,” he laments.

Ercila Sahores, Latin American director for Via Orgánica, admits it’s hard to overcome entrenched attitudes: “Peasant farmers have believed for centuries that agave isn’t digestible.”

Also, the local pattern of land ownership doesn’t facilitate change: “Many peasants work on collective lands, where change has to be introduced through consensus and this takes time,” Sahores says.

Perhaps the biggest problem of all is that much of the local land is now so degraded that reforestation, even with agave and mesquite, is a slow, tortuous process.

However, over the last two years, with the growing involvement of Via Orgânica, other NGOs, and the San Miguel de Allende municipal government, implementation is happening.#

Peasant farmers, mainly women, tending the agave. With the escalating rural economic crisis in full swing, many men have little choice but to migrate to the U.S. where they hope they can find work and send money to their families. Many women are left to run the farms, with the aid of old people and children. Image courtesy of Alejandro Vasconcelos.

“We, the municipal government, work with communities,” Peyret explains. “We go into the ejidos, and they decide what they want to restore. They have long been aware of the urgent need to restore the land, but alone they haven’t had the resources to attempt this work.”

Once the peasant farmers communally decide which area to work on, they then commit to not grazing their animals there for several years. Peyret continues: “Agave is one of the first things we plant. It feels comfortable in the worst places and in the worst conditions, even in a bad drought, as we have had this year. If you place it on a rock where there is almost no soil, it will grow much more strongly than on arable land in a flat area. Indeed, people say ‘Make agave suffer’ for you will have a better outcome.”

The government provides the peasant farmers with enticements: temporary jobs, the chance to rebuild their vegetable gardens, the donation of native plants and trees, including agave, and the construction of water catchment systems.

The peasant farmers are also keen to grow agave, even if many of them remain skeptical of the new fermentation process, because they know that, after a decade or so of growing it, they’ll be able to produce pulque, a traditional fermented drink made by fermenting agave sap, known as aguamiel. Well before that, they can begin to experiment with the fermentation process. Acceptance is now growing.

Containers used to ferment the agave at the Cañada de la Virgen organic farm. Image courtesy of Alejandro Vasconcelos.

Expanding agave–mesquite fodder production

A network of NGOs, coordinated by the municipal government, has now organized the Climate Action Plan. Together, they’re combating soil erosion and promoting the Agroforestry Zamarripa System. Peyret estimates that community farmers have already restored some 1,500 hectares (3,700 acres). But that’s just a start.

One small-scale farmer, Alejandro Vasconcelos, who holds a degree in sustainable and ecological agriculture, has become a program trainer. “I have trained over 400 farmers from Guanajuato state and another 100 from other states. The vast majority are very poor with no access to irrigation.” He is very enthusiastic: “The fermentation produces fodder that costs just 1 Mexican peso per kilo. And, once the farmers realize that they can fatten their cattle in such a cheap way, they totally accept the technology.”

Cummins agrees. “Our center received the visit of 30 farmers from Tlaxcala [another central Mexican state]. As soon as they saw animals eating the chopped-up pencas, it was as if a lightbulb had been turned on. The next day they ordered five [fermentation] machines [from Flores Gonzalez]. When they realized there was going to be a delay, they ordered another machine from the tequila industry and modified the blades [for use with agave]. Then they started giving the fodder to their donkeys, sheep and goats. With great success.”

Alejandro Vasconcelos with his children. Vasconcelos has played a key role in promoting the agave fermentation system. Image via Facebook.
Participants in an “Introduction to Agave” course carried out in Guanajuato state, and including the community of San Miguel de Allende. Only three or four participants come from the same community, so the famers can go back home and teach their neighbors. The farmers hear about the origins of agave and are trained in ways they can increase their income from agave farming, with all the techniques based on an eco-friendly, polyculture way of organic farming. Image courtesy of Alejandro Vasconcelos.

Via Orgânica expects that farmers can branch out over the long term. “Meat from animals reared on the pencas can be certified as organic and biodynamic,” Cummins explains. “Organic lamb can command a high price. And then there’s collagen, bone broth, and so on.” A bright future beckons, if the initiative can become established in this bone-dry land.

The effort brings other significant benefits, though not ones that bring such quick returns to farmers. One bonus is agave’s capacity to sequester carbon. According to Cummins, agave-based agroforestry, with 2,000 agaves per hectare, can store about 73.6 tons of carbon aboveground over a 10-year period, not counting the carbon stored by companion trees or shrubs such as mesquites and acacias.

He has made other exciting, far-reaching calculations: “This system has the capacity to sequester 100% of Mexico’s current [annual] greenhouse gas emissions (590 million tons of CO2) if deployed on approximately 1.1% or 2.2 million hectares (5.4 million acres) of the nation’s total land mass.” It is, he says, “among the most soil regenerative schemes on Earth, especially considering the fact that it can be deployed on degraded land, basically overgrazed and unsuitable for growing crops, with no irrigation or chemical inputs required whatsoever.”

Nabhan points up another benefit. “Mexico now has the highest rate of late onset diabetes of any country in the world, and childhood obesity will mean even higher rates in the future,” he says. Agave and mesquite could be part of the solution. They contain a chemical called inulin, which promotes digestive health by serving as a prebiotic that aids good gut bacteria, he says.

“You not only have a cheap and nutritious animal food, but also a way of tackling diabetes,” concludes Nabhan. This could save Mexico’s health service millions of dollars, he says.

Nabhan notes that peasant farming in Mexico has been in decline for more than a half century. “To see the chance of renewal is almost like a miracle,” he exclaims.

The potential is so great for the agave-mesquite fermentation process that it is already being transplanted into another region and nation wracked by drought: just north of the Mexico-U.S. border, in the state of Arizona. But Nabhan guesses that the scheme will advance more quickly in Mexico: “If necessity and hunger are the mother of invention, Ronnie and the Zamarippa Agave Agroforestry System have pressures working on their side. People need an alternative because they can’t farm or ranch as they did in the past. What they are proposing is really one of the only ways out of this dilemma.”

Cummins believes that Flores Gonzalez’ Agroforestry Zamarripa System could be applied in many other parts of the world. “We think agroforestry is at the cutting edge for agriculture regeneration. About 40% of the world’s terrain is arid or semiarid and different varieties of agave and nitrogen-fixing native trees are already growing in half of these areas. The possibilities are immense.” With options for combating soil degradation in short supply, many farmers and nations will be following the Guanajuato experiment with great interest.

Cummins believes that Flores Gonzalez’ Agroforestry Zamarripa System could be applied in other parts of the world, and that agroforestry is at the cutting edge for agriculture regeneration. Image courtesy of José Flores González.

Reposted with permission from Mongabay

Tree-range Chickens: How Raising Poultry in the Woods of B.C. Could Improve Food Security for Some Communities

Raising chickens in the woods is being touted as a way to help improve the food security of First Nation communities by providing an alternative to dwindling supplies of traditional foods such as moose and salmon.

The Regenerative Poultry Project has already produced 1,500 chickens on a small farm about 150 kilometres northwest of Terrace, B.C., using techniques developed in Guatemala.

The idea is that the chickens are allowed to roam the woods, roosting in trees and foraging for food, mimicking the behaviours of their wild ancestors.

“Chickens actually evolved as a jungle species,” said Kesia Nagata of the non-profit Skeena Watershed Conservation Coalition, which is helping run the project.

“They feel happiest when covered with a canopy that they can range under. They like to forage for their food, they like to scratch under trees and they like to roost and explore with the protection of a canopy over them.”

The birds aren’t completely on their own, though. They live on the property of Nathan Coombs, a Gitxsan farmer who runs Skeena Valley Farm and cares for the chickens.

KEEP READING ON CBC NEWS

Syntropic Agriculture: Cacao, Costa Rica, Case Study

After organizing and attending our first syntropic farming workshop in 2019, our team at Porvenir Design knew that we were looking for just the right client to implement a larger scale system to learn more about these ideas. Finca Luna Nueva presented that opportunity as they were seeking to expand their existing cacao orchards and we had recently taken over full administration of their farm.

As part of this work we documented the transformation of the space during its first year and a half, from design and planning to implementation and feedback. This blog seeks to explain in detail exactly why and how we incorporated syntropic farming principles into the installation of a one hectare cacao orchard. It is also our chance to explore feedback, discuss what we would do differently in the future and hear from the larger syntropic farming community.

Special thanks to the Finca Luna Nueva farm crew: Carlos A., Jose, Eladio, David, Christopher, Frander, Nelson, Carlos R., and Walter for their diligence and patience.

Special thanks to Elena Valverde and Iva Alvarado for the photos and editing, Travis Wals for the video creation, and Alejandro Arturo for the graphics.

 

What is Syntropic Farming

Syntropic Farming is a process and principle based form of agriculture developed and propagated primarily in Brazil. Syntropic farming is a field within the larger domains of agroecology and agroforestry. Syntropic systems complement the food forest ideas within permaculture design by providing more specific design details, metrics, and arrangements that focus on precisely imitating the spatial and temporal relationships of the region’s native forest ecology. It has shown the ability to be scaled beyond many similar fields of agroecology. Syntropic agriculture provides a set of principles and tools for shifting from organic monocultures and input based agriculture towards a holistic focus on ecology. In the end it is a system that seeks to imitate the forest and results in a forest ecosystem.

This blog won’t attempt to define syntropic farming beyond this. The following links are key places to explore the topic.

Life in Syntropy

Agenda Gotsch

What is Syntropic Farming?

IMG_2001.jpg.jpeg

IMG_2037.jpg.jpeg

 

 

 

 

 

 

 

 

 

Finca Luna Nueva and a New Ecology of Agriculture

Finca Luna Nueva (FLN) is a farm and eco-lodge located in the Costa Rican lowland Caribbean slopes, near the town of La Fortuna and the famed Arenal volcano. It is situated down river of the Bosque Eterno de Los Niños. FLN was one of the first certified organic and Demeter certified biodynamic farms in Central America, focused primarily on growing ginger and turmeric for export to the United States of America. The farm was successful in this endeavor until the soil fungal pathogen Fusarium sp became such an issue that total crop loss approached 80%. In the following years the farm resources shifted toward tourism activities as the lodge pivoted to remain financially viable and create diverse revenue streams. The Porvenir Design team was brought on board in 2018 to begin re-vitalizing the farm with a new perspective in agriculture.

DJI_0108.jpg

Why Adopt Syntropic Farming in this Context?

As FLN watched their turmeric crops fail following conventional organic/biodynamic approaches, they realized a new approach was going to be required on the farm. Their agricultural exploration shifted towards a focus on ecology, in particular the microbial health of the farm as a whole. Our team brought the additional perspective of creating systems which imitate forest ecology. For us, syntropic farming nests within permaculture design as a more organized form of agroforestry, integrating existing concepts of alley cropping, intercropping, keyline design and layout, and tree crop based agriculture.

FLN has a long history of pushing the edge of agricultural norms, being early adopters of many now-commonplace techniques and crops. They have the resources to trial new systems, so this was our chance to apply our new knowledge of syntropic agriculture in an opportune setting.

The Context of the Site

  • Elevation: 350 m above sea level in the Tileran Cordillera of the Caribbean slope.

  • Climate: Wet tropics, 4000 mm of rain/year average, driest season from January through May.

  • Watershed: San Carlos river watershed

  • Slope: Gentle slope toward the SE, drop of 12 meters from high to low points.

  • Size of Orchard: 1.1 hectares

  • Existing Vegetation: Pioneer species, early secondary forest growth, five to eight years of rest from any previous agriculture depending on the location in the site.

  • Existing trees, approximately 100, after thinning of overstory for timber crops: 1/3 timber, 2/3 fruit trees primarily breadfruit (Artocarpus altilis) and mamonchino (Nephelium lappaceum).

  • Neighbors: The orchard is within the original FLN farm, within a short walk to the lodge and other hotel infrastructure; the syntropic plot also borders 12 hectares of protected forest.

  • History: First cleared in 1997 for ginger planting. Management and practices included certified organic and biodynamic preparations/amendments, crop rotation, fallow period, tillage with oxen, cover crops, and earthworks with vetiver grass for erosion control.

IMG_4311.jpg.jpeg

Goals and Decision Making in the Syntropic Cacao Orchard

The stakeholders at FLN are highly involved as advocates within the regenerative agriculture movement, hence the system needed to demonstrate the principles of regenerative agriculture. Carbon sequestration in particular was an important goal in the design of the system.

In addition, we recognized the privilege and resources available at this particular project and wanted to leverage them to create an experimental system, as far from monoculture as possible. We anticipated it would be a complex system to manage, and we knew the farm crew, with decades of experience, would be able to do just this. We understood that this would be a very labor intensive system.

The more specific goals of the farm were to grow food for the lodge’s kitchen, while developing a few export grade cash crops (turmeric, cacao, ojoche) over all time scales. The system was designed to have yields within six months through 50 years. Much of the specific species selected to fill in the ecological niches were selected based on seed which we could source easily at quantity in our bioregion.

The COVID-19 pandemic struck after the initial set up of this system and forced our team to minimize labor intensive activities. Since the beginning of the pandemic we adjusted our goals to focus on maintenance of the most valuable crops, like cacao, while minimizing maintenance of short rotation crops.

Orchard Design

Row Design and Layout

As can be seen in the below graphic, the system was designed primarily to accommodate the cacao crops. A rows, featuring cacao, are spaced at 5 meters distance, parallel and offset from an initial contour line near the top of the slope. In between these rows are B rows, and in between all A-B lines are C rows. The pattern looks as follows A-C-B-C-A-C-B-C-A-C.

In total there are 17 A rows, 17 B rows, and 34 C rows. The longest row is 129 meters, the shortest is 73 meters, and the average is approximately 110 meters long.

Syntropic Farming Costa Rica

A row detail

  • Cacao (Theobroma cacao) planted every 4 meters

  • Poro (Erythrina sp.) posts planted every 4 meters between cacao

  • Pigeon pea (Cajanus cajan) was planted between each cacao and poro post

  • In a few select rows Sacha Inchi (Plukenetia volubilis) was established on these poro posts

  • Jack Bean (Canavalia sp.) was seeded throughout the rows, especially around the cacao planting location

B row detail

  • Tithonia diversifolia was planted every meter

  • Musa sp were planted every 3 meters

  • Pejibaye (Bactris gasipaes) and Ojoche (Brosimum alicastrum) were planted every 18 meters, with the exceptions of locations with existing overstory trees .

C row detail:

  • Turmeric (Curcurma longa) was planted in mounds every 2 meters, 150 grams of turmeric per mound.

  • In a few select rows only pineapple were planted.

  • Between turmeric, depending on light conditions and seed material, the following crops were planted:

    • Papaya (Carica papaya)

    • Pigeon Pea

    • Rosa de Jamaica (Hibiscus sabdariffa)

    • Jack Bean

    • Sun hemp (Crotalaria sp.)

    • Squash (Cucurbita spp.)

    • Yuca (Manihot esculenta)

    • Chili Dulce (Capsicum annum)

    • Moringa (Moringa oleifera)

    • Beans (Phaseolus sp.)

    • Corn (Zea mays)

Strata and Life Cycle

The below chart demonstrates how and where each plant fits within their expected time and space niches, as the system evolves toward maturity. In syntropic systems, plants are used to prepare the conditions for the next life cycle of plants. Hence Placenta species will be pruned or harvested out of the system to make room for the Secondary group of plants to grow to maturity.

Syntropic Farming Costa Rica

Plant and Other Materials

The following is an approximate list of the number of species put into the ground over the first year of this orchard:

  • 500 cacao trees of the following varieties: Buffalo 1, UF 613, UF 653, ICS 95, R6

  • 40 pejibaye palms

  • 40 ojoche trees

  • 450 kg of turmeric

  • 2000 Tithonia cuttings

  • 600 Musa sp seedlings

  • 3000 gandul seedlings

  • 20 kg of canavalia

  • 2500 pineapple (Ananas comosus) starts

  • All other noted species were planted at relatively small numbers by comparison.

Compost was applied to the base of each fruit tree and to the turmeric mounds. In total 2500 kgs of compost were applied

Mountain Microorganisms (MM) and other foliar sprays such as fish emulsion (Pescagro) have been applied to the fruit trees and turmeric periodically.

Two strands of woven electric wire were used to fence the entire site to prevent animal predation of crops, particularly that of wild pigs.

Implementation and Management Process

Our first step began with clearing the land. This process took approximately two months, and we laid out the orchard as it was cleared. We removed approximately 5000 cubic inches of milled timber with an oxen team in this process.

The first A row was selected from an existing contour line near the top of the slope. All lines were pulled parallel from this line. This allowed us to maintain equidistant spacing between lines but still approximate the natural topography of the slope.

A small part of the orchard was laid out and planted during our Permaculture Design Course, the rest of the work was accomplished by the FLN farm crew, six full time workers.

Plantings were done first to delineate the A and B Rows with Tithonia, Musa, and Poro in particular. The approximate calendar of installation looked as followed:

  • October-November 2019: Clearing and lay out of lines

  • November -December 2019: Primary planting to delineate lines

  • December- February 2020: Planting of long term overstory trees/palms, cover crops, and most shorter rotation crops

  • March – April 2020: Harvest of squash, beans, corn, and cover crop seeds

  • May 2020: Heavy pruning, planting of turmeric crop

  • June 2020: Planting of cacao trees

  • August 2020: Heavy pruning

  • December 2020: Cacao maintenance

  • February 2021: Heavy pruning and cacao formation pruning

This first heavy pruning occurred in May 2020 prior to the planting of the turmeric crop. This primarily involved pruning or removing Tithonia, Pigeon Pea, and Jack Bean to create more light. A second pruning occurred in August to open up additional light for the turmeric and cacao trees. A third heavy pruning occurred in February 2021. Ideally all planting would have occurred at the same time but was limited due to sourcing and logistical challenges.

Foliar sprays are applied every three months to at least the cacao crop. Specific pest control sprays are applied as the farm crew sees fit. It is important to understand that in this context, the farm crew has years of experience working within organic systems and has an understanding of remedies for in field issues such as insect pressure, bacterial/fungal influence, and more.

Harvest

While the pandemic significantly reduced both the lodge’s demand for food and the farm crew’s hours, we have experienced significant harvests of existing breadfruit and mamon chino trees, bananas, and plantains. We harvested and continue harvesting smaller quantities of chili, pina, corn, beans, and yucca. The turmeric harvest will occur in April 2021.

IMG_4985 smaller.png

IMG_4899smsmaller.png

Feedback and Conclusion

Our team continues to take in a number of lessons from this installation and management. The following are from our notes on what we learned and would have done differently.

  • Parallel Offset versus Triangulation: When laying out the initial cacao tree planting holes, we expected to triangulate the trees from each other while maintaining the equidistant planting lines. After much head scratching, we realized this is impossible on a terrain whose topography varies even slightly. We could only do one or the other. As usual, it was a challenge to take something from theory and put it into practice on a larger scale.

  • Pest Control: Our workers stated very clearly that tuber, grains, and pulses would be easy food for nearby wildlife. We wanted to see if a more diverse system, with more regular human presence would deter this, but quickly found out that wild pigs don’t care about those ideas. We adjusted rapidly and placed an electric fence around the entire hectare. An alternative decision would have been to simply not grow these types of short rotation crops. There is a good argument to be made that the cost of the fence and its maintenance is not worth the benefit of mixing our long term perennials, which don’t need protection, with these short rotation crops.

  • Access: In hindsight we would have adjusted the line layout slightly. Around the halfway point of the slope we would have liked to add a wider access path and used this to find a new contour line and run the lower lines parallel and offset to this. We considered this at the start but in order to simplify the installation process, decided against it.

  • Seeding Logistics: We used a mix of direct seeding, bare rooting plants from in ground planters and establishing plants in bags prior to planting. There are distinct pros and cons to each of these. In general we feel that the more one can direct seed the better, but this requires a higher level of skill from the farm crew. We are continually working with our farm crew to determine what they believe are the most efficient methods.

  • Simplification: During our workshop in 2019, we were astounded by the complexity and number of plant species and interactions that were recommended by our instructors. We sought to replicate this, despite some hesitation, by incorporating 23 different species into this system. Many of these crops did not thrive because it was simply too challenging, in our context, to manage this complexity. Some of this was based on having too few plants, some based on COVID labor shortages, some on poor crop selection, and so forth. In a more recent 3000 sq meter vanilla orchard we simplified our syntropic system to around 10 species.

  • Limitations of Organic Certification: It has become clear to us in this process, and with another installation at a different site, that conventional organic certification does not match well with highly diverse systems such as this. We felt severely limited in the soil amendments we could use and the complications of documenting all the sourcing becomes a part time job for someone. Organic certification is clearly designed for input-based agriculture and not process-based agriculture.

  • Pruning, Light and Biomass Management: We found ourselves needing to heavily prune certain biomass species to open up more sunlight for the turmeric and cacao. Although many crops can adjust to shade, they really need lots of sun to start growing well. This management, the details of pruning, has been the most challenging piece to communicate to our farm crew, as we learn with them. In addition figuring out exactly where to place biomass on the ground has been a full conversation, as the biomass both helps with weed suppression but also makes clearing around young trees more challenging. These are the details which we will be playing with for years to come.

In summary, we are excited to keep learning about syntropic systems in the future and hope that this project can be a source of inspiration and learning for anyone else interesting in this realm. Come and visit the farm!

Cómo las mejores prácticas de agricultura y uso de la tierra orgánicas y regenerativas pueden revertir el calentamiento global

Resumen

  • Los suelos de la tierra, junto con los árboles y las plantas, son el mayor sumidero de carbono después de los océanos.
  • Las prácticas agrícolas orgánicas regenerativas secuestran CO2 y lo almacenan debajo y sobre el suelo en forma de materia orgánica. Los policultivos perennes, la agrosilvicultura y la reforestación pueden mantener y aumentar el carbono tanto por debajo como en la superficie del suelo.
  • La implementación a gran escala de un pequeño porcentaje (5-10%) de los sistemas orgánicos y regenerativos que incluyen las mejores prácticas dará como resultado que miles de millones de toneladas (Gt) de CO2 por año sean secuestradas en el suelo y en forma de biomasa aérea continua y perenne. La identificación, financiación y despliegue de las mejores prácticas en el 5-10% o más del total de tierras de cultivo (1,6 mil millones de hectáreas), pastizales (3,2 mil millones de hectáreas) y bosques (4 mil millones de hectáreas) del mundo será más que suficiente para capturar y eliminar todo el CO2 y los gases de efecto invernadero (43 Gt de CO2) que se emiten actualmente, sin agregar  más CO2 a la atmósfera ni a los océanos.
  • Cuando se libera dióxido de carbono CO2 a la atmósfera por la quema de combustibles fósiles o por prácticas agrícolas o de uso de la tierra destructivas (actualmente equivalen a 43 Gt de emisiones de CO2 por año), aproximadamente el 50% de estas 43 Gt de emisiones de CO2 permanecen en la atmósfera (21,5 Gt de CO2 al año), mientras que el 25% es absorbido por la tierra, las plantas y los árboles (10,75 Gt de CO2) y el 25% restante (10,75 Gt de CO2) es absorbido por el océano. Por lo tanto, debemos comenzar a reducir 32,25 Gt de CO2 (y eventualmente más) de las emisiones totales actuales (junto con la conversión a energía alternativa y la conservación de energía), para alcanzar emisiones netas cero (eliminar o cancelar todas las emisiones que van a la atmósfera y a los océanos). Necesitaremos una reducción neta de 32,75 Gt lo antes posible, ya que nuestros suelos y bosques ya están capturando 10,75 Gt de CO2. Una vez que dejemos de agregar  más CO2 a los océanos (y la atmósfera), y continuemos por el camino de la energía alternativa y la agricultura y el uso de la tierra regenerativos, los océanos, los suelos y la biota podrán extraer cantidades cada vez más significativas del legado (exceso) de carbono en la atmósfera, que, a su vez, comenzará a reducir el calentamiento global de manera constante.
  • Regeneration International, una red mundial de agricultura orgánica y regenerativa, con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa, ha comenzado a ayudar a promocionar las mejores prácticas mundiales y a coordinar el despliegue, la financiación y la implementación a gran escala de estos sistemas.

Introducción

Casi nadie había oído hablar de la agricultura regenerativa antes de septiembre de 2014, cuando Regeneration International fue fundada por un pequeño grupo de líderes internacionales de los movimientos orgánicos, agroecológicos, de manejo holístico, medioambiental y de salud natural con el objetivo de cambiar la conversación mundial sobre el clima, la agricultura y uso de la tierra. Ahora, la agricultura regenerativa aparece en las noticias todos los días en todo el mundo.

El concepto de un movimiento de regeneración global coordinado se presentó inicialmente en la masiva Marcha del Cambio Climático en Nueva York, el 22 de septiembre de 2014, en una conferencia de prensa en la sede del Instituto Rodale. La conferencia de prensa reunió a una red global de agricultores, ganaderos, administradores de tierras, consumidores y activistas climáticos con ideas afines.

La primera Asamblea General de RI se celebró en Costa Rica en 2015 con participantes de todos los continentes. En cinco años, Regeneration International ha crecido y ya cuenta con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa. RI y nuestros aliados hemos tenido éxito en la promoción del concepto de agricultura regenerativa como un sistema revolucionario para la restauración de ecosistemas y la captura de dióxido de carbono a una escala y un cronograma apropiados para nuestra actual emergencia climática.

¿Por qué la agricultura regenerativa?

La agricultura regenerativa se basa en una variedad de prácticas agrícolas, ganaderas y de uso de la tierra que utilizan la fotosíntesis de las plantas y los árboles para capturar CO2 y almacenarlo por debajo y en la superficie del suelo. La agricultura regenerativa se está utilizando ahora como un término genérico para los muchos sistemas agrícolas que utilizan técnicas como rotaciones más largas, cultivos de cobertura, abonos verdes, leguminosas, composta, fertilizantes orgánicos, manejo holístico del ganado y agrosilvicultura. Sin embargo, Regeneration International cree que la verdadera agricultura regenerativa debe ser tanto orgánica como regenerativa.

Otros términos que describen la agricultura regenerativa incluyen: agricultura orgánica, agrosilvicultura, agroecología, permacultura, pastoreo holístico, silvopastoreo, agricultura sintrópica, pasture cropping o método CCPP (cultivos de cereal sobre pastos permanentes) y otros sistemas agrícolas que pueden aumentar la materia orgánica / carbono del suelo. La materia orgánica del suelo es un indicador importante de la salud del suelo, ya que los suelos con niveles bajos no son saludables.

El suelo contiene casi tres veces la cantidad de carbono que la atmósfera y la biomasa (bosques y plantas) combinadas. La investigación a largo plazo muestra que el carbono del suelo puede ser estable durante más de 100 años, mientras que las prácticas forestales y agroforestales adecuadas pueden almacenar carbono en la superficie del suelo de forma continua.

La gestión del cambio climático es un tema importante que tenemos que abordar ahora

Los niveles de CO2 atmosférico han incrementado hasta llegar a 2 partes por millón (ppm) por año. El nivel de CO2 alcanzó un nuevo récord de 400 ppm en mayo de 2016. Sin embargo, a pesar de todos los compromisos asumidos por los países en París en diciembre de 2015, los niveles de CO2 aumentaron en 3,3 ppm en 2016 estableciendo un récord. Desde 2018 aumentó de nuevo en 3,3 ppm para establecer un nuevo récord de 415,3 ppm en mayo de 2019. A pesar del cierre económico mundial como respuesta a la pandemia de COVID-19, los niveles de CO2 aún establecieron un nuevo récord de 417,2 ppm en mayo de 2020. Este es un aumento masivo de emisiones por año desde el Acuerdo de París y muestra que en realidad la mayoría de los países ni siquiera están cerca de cumplir con sus compromisos de reducción de CO2 de París.

Revertir el cambio climático

417 ppm supera con creces el objetivo de París de limitar el aumento de la temperatura terrestre a 2 grados centígrados.

Para estabilizar los niveles de CO2 atmosférico, los sistemas agrícolas regenerativos deberán reducir el actual aumento de emisiones de 3,3 ppm de CO2 por año. El uso de la fórmula aceptada de que 1 ppm de CO2 = 7,76 Gt de CO2 significa que, como mínimo, es necesario extraer de la atmósfera 25,61 gigatoneladas (Gt) de CO2 por año. Pero en realidad necesitamos reducir 31,25 Gt de CO2 o más si queremos evitar que más CO2 caliente nuestros océanos ya recalentados y comenzar a reducir el legado de 417 ppm de CO2 alojado en la atmósfera.

El potencial de las “mejores prácticas” de la agricultura regenerativa

Existen numerosos sistemas agrícolas regenerativos que pueden secuestrar CO2 de la atmósfera mediante la fotosíntesis mejorada de las plantas y convertir este CO2 en materia orgánica del suelo a través de la actividad de las raíces y la biología del suelo: el microbioma del suelo. Otros pueden aumentar el almacenamiento de carbono sobre el suelo a través de prácticas forestales y agrosilvopastoriles / silvopastoriles regenerativas. No tenemos tiempo que perder en sistemas agrícolas o de uso de la tierra que solo capturan pequeñas cantidades de CO2. Necesitamos concentrarnos en escalar y expandir cualitativamente los sistemas que pueden lograr altos niveles de secuestro de carbono y restauración de ecosistemas, sistemas que sean apropiados y escalables para diferentes países, regiones, culturas y ecosistemas.

Los cálculos aproximados utilizados para los ejemplos a continuación son un buen ejercicio para mostrar el potencial de cambio a nivel mundial de estos sistemas regenerativos que incluyen las mejores prácticas para abordar la emergencia climática y comenzar a revertir el calentamiento global.

Sistema agroforestal de agave

El “proyecto mil millones de agaves” es una estrategia revolucionaria de regeneración de ecosistemas adoptada recientemente por un número creciente de granjas mexicanas innovadoras en la región desértica de Guanajuato, que ahora se extiende por todo México.

Este sistema agroforestal combina el cultivo denso (800 por acre / 2.000 por hectárea) de plantas de agave y especies de árboles fijadoras de nitrógeno (como el mezquite), con el pastoreo rotativo y holístico del ganado. El resultado es un sistema de alta biomasa y alto rendimiento de forraje que funciona bien incluso en tierras degradadas y semiáridas.

El sistema produce grandes cantidades de hojas y piñas de agave. Cuando se pica y se fermenta en recipientes cerrados, este material vegetal produce un ensilaje excelente y económico que sirve como forraje para animales.

Tener una gran cantidad de forraje animal fermentado a la mano reduce la presión para sobrepastorear los pastizales frágiles y mejora la salud del suelo, la retención de agua y la salud de los animales, al mismo tiempo que extrae y almacena cantidades masivas de CO2 atmosférico (270 toneladas de CO2 por hectárea almacenadas en la superficie del suelo de manera continua cada año después de 3-10 años.)

El sistema agroforestal de agave puede implementarse a gran escala en gran parte de las regiones áridas y semiáridas del mundo utilizando leguminosas y pastos nativos, y formar así sistemas agroforestales biodiversos altamente productivos que se basen en las especies nativas de cada región. El picado y la fermentación de las vainas de los árboles leguminosos, como el mezquite (que fijan nitrógeno y nutrientes en el suelo), agregadas al agave fermentado, producen un forraje para animales de alto contenido proteico superior a la alfalfa y a una fracción de su costo, todo sin la necesidad de irrigación o de productos químicos sintéticos.

Investigaciones recientes de Hudson Carbon muestran que este sistema agroforestal de agave puede secuestrar 270 toneladas de CO2 por hectárea (109 toneladas por acre) en la superficie del suelo por año de forma continua, sin contar el secuestro subterráneo ni la cantidad de carbono secuestrado por los árboles compañeros (494 por hectárea / 200 por acre).

Según la Convención de las Naciones Unidas de Lucha contra la Desertificación (UNCCD por sus siglas en inglés), aproximadamente el 40% de la tierra del mundo (4 mil millones de hectáreas / 10 mil millones de acres) son desiertos y tierras secas, principalmente en África, Asia y América Latina. Estas zonas sustentan a más de dos mil millones de personas y suministran alrededor del 60% de la producción mundial de alimentos. Si el sistema agroforestal de agave orgánico y regenerativo se implementara a nivel mundial en el 10% (400 millones de hectáreas) de estas 4 mil millones de hectáreas de tierras áridas y semiáridas, secuestraría 10,8 Gt de CO2 por año. Esto representa aproximadamente 1/3 de la cantidad de CO2 que se necesita capturar cada año para revertir el cambio climático.

El método BEAM

El método BEAM (Manejo Agrícola Biológicamente Mejorado), desarrollado por el Dr. David Johnson de la Universidad Estatal de Nuevo México, produce composta orgánica con una gran diversidad de microorganismos del suelo, especialmente material fúngico. Múltiples cultivos manejados con BEAM han logrado niveles muy altos de secuestro de CO2 y rendimiento. La investigación publicada por el Dr. Johnson y sus colegas muestra: “… un estudio de campo agrícola de 4,5 años promovió la captura y almacenamiento promedio anual de 10,27 toneladas métricas de C ha-1 año -1 del suelo al mismo tiempo que aumentó la disponibilidad de macro, meso y micronutrientes del suelo ofreciendo un mecanismo de secuestro de carbono robusto y rentable dentro de un enfoque de gestión agrícola sostenible más productiva y a largo plazo”. Estos resultados se están reproduciendo actualmente en otros ensayos.

Estas cifras significan que el método BEAM puede capturar 37.700 kilos (37,7 toneladas) de CO2 por hectárea por año, lo que equivale aproximadamente a 15,3 toneladas de CO2 por acre.

El método BEAM se puede utilizar en todos los sistemas de producción de alimentos basados ​​en el suelo, incluidos los cultivos anuales, los cultivos permanentes y los sistemas de pastoreo, y también en las regiones áridas y semiáridas. Si BEAM se implementara a nivel mundial en solo el 5% de todas las tierras agrícolas (2.500 millones de hectáreas o 12.000 millones de acres), secuestraría 9,18 Gt de CO2 por año.

El potencial del método “sin matar sin arar” orgánico biointensivo

La granja Singing Frogs es una granja hortícola orgánica y agroecológica que “no mata y no ara” altamente productiva con una rica biodiversidad en tres acres (1,2 ha). La clave de su sistema de cero labranza es cubrir las camas de cultivo con cobertura vegetal y composta en lugar de arar o usar herbicidas, plantar directamente en la composta, y una gran biodiversidad de cultivos comerciales y de cobertura que se rotan continuamente para eliminar las malezas, los ciclos de enfermedades y las plagas.

Según la Universidad Estatal de Chico, los niveles de materia orgánica del suelo (MOS) han aumentado en un 400% en seis años. Los Kaiser, fundadores y propietarios de la granja Singing Frogs, han aumentado su MOS del 2.4% a un óptimo 7-8% con un aumento promedio de aproximadamente 3/4 de punto porcentual por año. Este sistema agrícola es apto para más del 80% de los agricultores de todo el mundo, ya que la mayoría de ellos tienen menos de dos hectáreas o cinco acres. Si el modelo de la granja Singing Frogs se implementara globalmente a tierras de cultivos permanentes y arables, se capturarian 179 Gt de CO2 por año.

El potencial del pastoreo regenerativo

En la actualidad, existe un conjunto considerable de ciencia publicada y prácticas basadas en evidencia que muestran que los sistemas de pastoreo regenerativo pueden secuestrar más gases de efecto invernadero de los que emiten, lo que los convierte en una importante solución para revertir el cambio climático.

Además de secuestrar CO2, estos sistemas regeneran pasturas y pastizales degradados, mejoran la productividad, la capacidad de retención de agua y los niveles de carbono del suelo.

Alrededor del 68% de las tierras agrícolas del mundo se utilizan para el pastoreo. La evidencia publicada muestra que los pastizales administrados correctamente pueden acumular carbono en el suelo más rápido que muchos otros sistemas agrícolas y lo almacenan más profundamente en el suelo.

La investigación realizada por Machmuller et al. 2015: “En una región de extensa degradación del suelo en el sureste de los Estados Unidos, evaluamos la acumulación de C en el suelo durante 3 años en una cronosecuencia de 7 años de tres granjas convertidas al pastoreo manejado de forma intensiva. Aquí mostramos que estas granjas acumularon C en 8,0 Mg ha-1 año-1, aumentando el intercambio catiónico y la capacidad de retención de agua en un 95% y 34% respectivamente”.

Significa que han secuestrado 29.360 kilos de CO2 por hectárea al año. Esto es aproximadamente 29.000 libras de CO2 por acre. Si estas prácticas de pastoreo regenerativo se implementaran en el 10% de las tierras de pastoreo del mundo, secuestrarían 9,86 Gt de CO2 por año.

Método CCPP (cultivos de cereal sobre pastos permanentes)

El método CCPP o pasture cropping consiste en sembrar un cultivo comercial en un pastizal perenne en lugar de sobre un suelo desnudo. No es necesario arar las especies de pastos como las malezas o eliminarlas con herbicidas antes de plantar el cultivo comercial. El pasto perenne se convierte en cultivo de cobertura.

Este método fue desarrollado por primera vez por Colin Seis en Nueva Gales del Sur, Australia. El principio se basa en el sólido principio ecológico de que las plantas anuales crecen en sistemas perennes. La clave es adaptar este principio al sistema de gestión apropiado para los cultivos comerciales y el clima específicos.

Un excelente ejemplo del desarrollo del método CCPP y el método de 0 labranza “sin matar sin arar” es Soil Kee, una herramienta diseñada por Neils Olsen.

Primero, la cobertura del suelo / pastos se pasta o se cubre con mantillo para reducir la competencia de raíces y luz. Luego, Soil Kee rompe la masa de raíces, levanta y airea el suelo, cubre la cobertura del suelo / pastos en franjas estrechas y planta semillas, todo con una alteración mínima del suelo. Las semillas de los cultivos de cobertura / comerciales se plantan y simultáneamente se alimentan con un nutriente orgánico como el guano. Cuanto más rápido germina y crece la semilla, mayor es el rendimiento. Es fundamental proporcionar la biología y la nutrición a la semilla en el momento de la germinación y eliminar la competencia de las raíces.

El cultivo de pastos es excelente para aumentar la materia orgánica del suelo / el carbono del suelo. Neils Olsen fue pagado por secuestrar 11 toneladas de CO2 por hectárea por año, bajo el Programa de Agricultura de Carbono del gobierno australiano en 2019. En 2020, le pagaron por secuestrar 13 toneladas de CO2 por hectárea. Es el primer agricultor del mundo en ser pagado por secuestrar carbono en el suelo bajo un sistema regulado por el gobierno.

Si este sistema se implementara en el 10% de todas las tierras agrícolas, secuestraría 6,38 Gt de CO2 por año.

Reforestación global

Además de recargar y regenerar las tierras agrícolas, una parte importante de la regeneración de la Tierra y revertir el cambio climático será preservar, restaurar y expandir los 4 mil millones de hectáreas de bosques y humedales del mundo. Esta reforestación y forestación incluirá la plantación de hasta un billón de árboles en áreas deforestadas, así como varios cientos de miles de millones de árboles y plantas perennes en los 1,6 mil millones de hectáreas de tierras de cultivo (agrosilvicultura) y 3,2 mil millones de hectáreas de pasturas o pastizales (silvopastoreo) del mundo.

Se estima que la población mundial de árboles, que cubre el 30% de la superficie terrestre de la Tierra, es de tres billones de árboles, y se talan 15 mil millones de árboles cada año. Desde que los humanos comenzaron a cultivar, hace 10.000 años, aproximadamente la mitad de los árboles de la Tierra han sido talados y no replantados. Los bosques y humedales de la Tierra ahora secuestran más de 700 mil millones de toneladas de carbono y absorben, incluso teniendo en cuenta la deforestación masiva y los incendios forestales, unos adicionales 1,2 gigatoneladas de carbono neto. (White, Biosequestration and Biological Diversity, p.101) El poder de sumidero neto o de secuestro de carbono de los bosques de hoy asciende aproximadamente al 12% de todas las emisiones humanas actuales.

Si la “deforestación neta” (más árboles cortados, talados o quemados que la cantidad de árboles nuevos y saludables) pudiera detenerse en áreas boscosas, especialmente en áreas tropicales donde los árboles crecen más rápido y almacenan la mayor cantidad de carbono, y los bosques de todo el mundo se manejaran para aumentar la fotosíntesis y la biomasa a través de la reforestación masiva (y reduciendo los árboles por hectárea de las áreas boscosas favoreciendo que haya menos árboles pero más grandes y saludables por hectárea), los bosques del mundo podrían secuestrar cuatro mil millones de toneladas o más de carbono atmosférico al año, un 40% de todas las emisiones humanas actuales. Junto con la energía renovable y el cultivo de carbono, si detenemos la deforestación y reforestamos la Tierra con un billón de árboles apropiados para cada especie, y luego mantenemos estos árboles, podemos literalmente revertir el calentamiento global.

El Proyecto Ambiental de las Naciones Unidas (PNUMA) ha anunciado ahora un nuevo objetivo para la reforestación mundial y el secuestro de carbono llamado “Campaña 1 billón de árboles“. La ONU señala que hay suficiente espacio deforestado o vacío en áreas rurales y urbanas para plantar mil millones de árboles en el planeta, de los cuales se espera que sobrevivan 600 mil millones de árboles maduros. Y esta campaña de plantación de un billón de árboles no incluye los más de 100 mil millones de árboles adicionales que podrían y deberían plantarse en las 4,8 mil millones de hectáreas de tierras de cultivo y pastos de la Tierra utilizando las técnicas  de agrosilvicultura y silvopastoreo más que probadas que secuestran carbono, amigables con el ganado y que mejoran la fertilidad. El PNUMA advierte, sin embargo, que hay “170 mil millones de árboles en riesgo inminente de destrucción”, que deben ser protegidos para el almacenamiento de carbono y la protección de la biodiversidad cruciales.

Según el PNUMA, “la reforestación global podría capturar el 25% de las emisiones de carbono anuales globales y crear riqueza en el sur global”. Ya se han plantado más de 13.600 millones de árboles como parte de la Campaña 1 billón de árboles, que analiza y proyecta, no sólo dónde se han plantado árboles, sino también las vastas áreas donde los bosques podrían restaurarse.

La Campaña de 1 billón de árboles de la ONU está inspirada en parte por un estudio reciente del Dr. Thomas Crowther y otros, que integra datos de encuestas terrestres y satélites, que encontró que la replantación de los bosques del mundo (1,2 billones de árboles adicionales) a una escala masiva en los espacios vacíos de los bosques, las áreas deforestadas y las tierras degradadas y abandonadas en todo el planeta absorberían 100 mil millones de toneladas de exceso de carbono de la atmósfera.

Según Crowther: “hay 400 gigatoneladas ahora, en los 3 billones de árboles, y si tuvieras que escalar eso en otro billón de árboles, estaríamos hablando de cientos de gigatoneladas capturadas de la atmósfera – al menos 10 años de emisiones antropogénicas completamente borradas… [los árboles son] nuestra arma más poderosa en la lucha contra el cambio climático”, dijo.

Y las proyecciones de Crowther (10 años o 450 Gt de emisiones de CO2 que se pueden secuestrar a través de la reforestación global) no incluyen la enorme cantidad de absorción y secuestro de carbono que podemos lograr a través de prácticas agroforestales y silvopastoriles, plantando árboles, aunque solo sea unos pocos árboles por hectárea, en los 1,6 mil millones de hectáreas de tierras de cultivo y 3,2 mil millones de hectáreas de pasturas y pastizales a menudo deforestadas de EE. UU. y del mundo.

Acabar con la emergencia climática: implementación a gran escala

Regeneration International cuenta con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa. Esto nos da la capacidad de trabajar con nuestras organizaciones afiliadas en todos los continentes cultivables para desarrollar y ampliar soluciones agrícolas regenerativas apropiadas para múltiples países y regiones.

La transición de una pequeña proporción (10%) de la producción agrícola mundial a estos sistemas regenerativos basados ​​en la evidencia y las mejores prácticas capturará suficiente CO2 para revertir el cambio climático y restaurar el clima global, especialmente en conjunto con un agresivo programa global de reforestación como la Campaña de 1 billón de árboles.

Si el sistema agroforestal de agave orgánico y regenerativo patrocinado por RI se implementa a nivel mundial en el 10% (400 millones de hectáreas) de las tierras áridas y semiáridas, secuestrará 10,8 Gt de CO2 por año.

El 5% de las tierras agrícolas globales regeneradas por el sistema de compostaje orgánico BEAM puede secuestrar 9,18 Gt de CO2 por año.

El 5% de las granjas pequeñas en tierras de cultivo permanente y arable que utilizan los sistemas orgánicos biointensivos “sin matar sin arar” de la granja Singing Frogs podrían secuestrar 8,9 Gt de CO2 / año.

El 10% de los pastizales manejados bajo pastoreo regenerativo podría secuestrar 9,86 Gt de CO2 por año.

El 10% de las tierras agrícolas que utilizan el método CCPP podrían secuestrar 6,38 Gt de CO2 por año.

El despliegue a nivel mundial de todas estas prácticas regenerativas y orgánicas de primer nivel en el 5-10% de todas las tierras agrícolas (incluidas las tierras áridas y semiáridas donde la siembra de cultivos y el pastoreo de animales son cada vez más problemáticos) resultaría en 45,12 Gt de CO2 por año secuestrado en el suelo y almacenado en la superficie de forma continua, que es un 50% más que la cantidad de secuestro necesaria para extraer los 31,25 Gt de CO2 que se liberan actualmente a la atmósfera y los océanos. Y esto no incluye el secuestro masivo de CO2 que es posible bajo la Campaña de un billón de árboles.

Estos cálculos aproximados están diseñados para mostrar el considerable potencial de implementar a gran escala estos sistemas regenerativos probados de alto rendimiento. Los ejemplos son soluciones “listas para usar”, ya que se basan en prácticas existentes. No es necesario invertir en tecnologías caras, potencialmente peligrosas y no probadas, como la captura y almacenamiento de carbono o la geoingeniería.

El objetivo de lograr tasas de adopción del 5-10% para estas prácticas regenerativas y orgánicas en todo el mundo es realista y alcanzable. Las prioridades fundamentales son educar a los consumidores y crear la demanda del mercado, identificar y promover las mejores prácticas regenerativas en todos los países y regiones del mundo, cambiar las políticas públicas siempre que sea posible (desde a nivel local al internacional) y luego financiar (usando dinero del sector público y privado), expandir y escalar estos sistemas orgánicos y regenerativos para restaurar ecosistemas, secuestrar carbono, regenerar la salud pública y eliminar la pobreza rural.

Es hora de continuar con la restauración de los ecosistemas globales y la reducción del exceso de CO2 mediante la implementación masiva de las “mejores prácticas” existentes de la agricultura regenerativa, la gestión ganadera, las prácticas forestales y el uso de la tierra. Todo esto es muy factible y alcanzable. Requerirá una inversión sustancial en capital natural de los donantes públicos y privados existentes y de instituciones nacionales e internacionales, pero obviamente “el costo vale la pena” en comparación con las pràcticas de siempre de nuestra actual “economía suicida”. Requerirá que las organizaciones de capacitación y las ONG relevantes lleven a cabo cursos y talleres desde los pueblos estadounidenses a Oriente Medio y más allá, a través de sistemas de capacitación de agricultor a agricultor impulsados ​​desde las bases, y apoyados por consumidores urbanos en todo el mundo. Es tarde. Pero todavía hay tiempo para cambiar las cosas.

La adopción generalizada de las mejores prácticas orgánicas y regenerativas debe ser la máxima prioridad para los agricultores, ganaderos, gobiernos, organizaciones internacionales, representantes electos, industria, organizaciones de capacitación, instituciones educativas y organizaciones de cambio climático. Se lo debemos a las generaciones futuras y a toda la rica biodiversidad de nuestro precioso planeta viviente.

 

Referencias / fuentes:

         Johnson D, Ellington J and Eaton W, (2015)  Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix, PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.789v1 | CC-BY 4.0 Open Access | rec: 13 ene 2015, publ: 13 ene 2015

Jones C, (2009) Adapting farming to climate variability, Amazing Carbon, www.amazingcarbon.com

Lal R (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, 1: 86–100.

Kulp SA & Strauss BH (2019), New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications, (2019)10:4844,  https://doi.org/10.1038/s41467-019-12808-z, www.nature.com/naturecommunications

McCosker, T. (2000). “Cell Grazing – The First 10 Years in Australia,” Tropical Grasslands. 34:  207-218.

Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D & Thompson A (2014). Emerging land use practices rapidly increase soil organic matter, Nature Communications 6, articulo numero: 6995 doi:10.1038/ncomms7995, Received 21 June 2014 Accepted 20 marzo 2015 publicado 30 abril 2015

NOAS (2017). National Oceanic and Atmospheric Administration (US)

https://www.climate.gov/news-features/climate-qa/how-much-will-earth-warm-if-carbon-dioxide-doubles-pre-industrial-levels, visitado 30 ene 2017

Rohling EJ, K. Grant, M. Bolshaw, A. P. Roberts, M. Siddall, Ch. Hemleben and M. Kucera (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles, Nature Geoscience, advance online publication,  www.nature.com/naturegeoscience

Spratt D and Dunlop I, 2019, Existential climate-related security risk: A scenario approach, Breakthrough – National Centre for Climate Restoration, Melbourne, Australia

www.breakthroughonline.org.au, mayo 2019 actualizado 11 junio 2019

https://docs.wixstatic.com/ugd/148cb0_90dc2a2637f348edae45943a88da04d4.pdf

Tong W, Teague W R, Park C S and Bevers S, 2015, GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains, Sustainability 2015, 7, 13500-13521; doi:10.3390/su71013500, ISSN 2071-1050, www.mdpi.com/journal/sustainability

UNCCD, 2017, The Global Land Outlook 2017, Secretariat of the United Nations Convention to Combat Desertification Platz der Vereinten Nationen 153113 Bonn, Germany

https://knowledge.unccd.int/sites/default/files/2018-06/GLO%20English_Full_Report_rev1.pdf

Global Agricultural Land Figures

United Nation’s Food and Agriculture Organization (FAO),  FAOSTAT data on land use, recuperado 4 diciembre, 2015

La cantidad total de tierra utilizada para producir alimentos es de 4.911.622.700 hectáreas (18.963.881 millas cuadradas).

Esta se divide en: 

Tierras cultivables/arables: 1.396.374.300 hectáreas (5.391.431 millas cuadradas)

Pastos permanentes: 3.358.567.600 hectáreas (12.967.502 millas cuadradas)

Cultivos permanentes: 153.733.800 hectáreas (593,570 millas cuadradas)

Cálculos del Proyecto mil millones de agaves

Según la UNCCD The Global Land Outlook 2017, casi el 45% de las tierras agrícolas del mundo se encuentran en áreas secas, principalmente en África y Asia.

45% de tierras de cultivos (4.911.622.700 ha x 45%) = 2,2 mil millones de hectáreas

2,2 x 270 t de CO2 por ha = 594 Gt of CO2 por año

Cálculos BEAM 

Un cálculo básico demuestra el potencial de implementar esta tecnología simple a gran escala en las tierras agrícolas mundiales. Carbono orgánico del suelo x 3,67 = CO2, lo que significa que 10,27 toneladas métricas de carbono del suelo = 37,7 toneladas métricas de CO2 por hectárea por año (t CO2 / ha / año). Esto significa que BEAM puede secuestrar 37,7 toneladas de CO2 por hectárea, lo que equivale aproximadamente a 38.000 libras de CO2 por acre.

Si BEAM se extrapolara globalmente a tierras agrícolas, secuestraría 185 Gt de CO2 / año. (37,7 t CO2 / ha / año X 4,911,622,700 ha = 185,168,175,790t CO2 / ha / año)

Cálculos de la granja Singing Frogs

Los Kaiser han logrado aumentar la materia orgánica del suelo del 2,4% a un óptimo 7-8% en solo seis años, un aumento promedio de aproximadamente 3/4 de punto porcentual por año.

(Elizabeth Kaiser Pers. Com. 2018 and Chico State University https://www.csuchico.edu/regenerativeagriculture/demos/singing-frogs.shtml

“Un aumento del 1% en el nivel de carbono del suelo en el perfil del suelo de 0-30 cm equivale a un secuestro de 154 tCO2 / ha si se cuenta con una densidad aparente promedio de 1,4 g / cm3” (Jones C. 2009)

3/4 % OM = 115,5 toneladas métricas de CO2 por hectárea (115.500 libras por acre por año)

Este sistema se puede utilizar en tierras arables y de cultivos permanentes. Tierra cultivable / arable: 1.396.374.300 hectáreas más cultivos permanentes: 153.733.800 hectáreas = 1.550.108.100 hectáreas

Extrapolado a nivel mundial a través de tierras cultivables permanentes y arables, secuestraría 179 Gt de CO2/año (1.550.108.100 hectáreas x 115,5 toneladas métricas de CO2 por hectárea = 179.037.485,550 toneladas métricas)

Cálculos del pastoreo regenerativo

Para explicar la importancia de las cifras de Machmuller: 8,0 Mg ha − 1 año − 1 = 8.000 kg de carbono almacenados en el suelo por hectárea por año. Carbono orgánico del suelo x 3,67 = CO2, lo que significa que estos sistemas de pastoreo han secuestrado 29.360 kg (29,36 toneladas métricas) de CO2 / ha / año. Esto es aproximadamente 30.000 libras de CO2 por acre.

Si estas prácticas de pastoreo regenerativo se implementaran en las tierras de pastoreo del mundo, secuestrarían 98,6 Gt CO2 / año.

(29,36 t CO2/ha/año X 3.358.567.600 ha = 98.607.544.736t CO2/ha/año)

Cálculos de CCPP

Tierras agrícolas: 4.911.622.700 ha x 13t CO2/ha/año = 63,8 Gt of CO2 por año 

Cálculos de la reforestación global

El Proyecto de un billón de árboles

 

Andre Leu es el Director Internacional de Regeneration International. 

Ronnie Cummins es cofundador de Organic Consumers Association (OCA) y Regeneration International

Para suscribirse al boletín de RI haga clic aquí.

Best Practices: How Regenerative & Organic Agriculture and Land Use Can Reverse Global Warming

Leer en español aquí

Summary 

  • The earth’s soils, along with trees and plants, are the largest sink or depository for carbon after the oceans.
  • Regenerative organic agricultural practices sequester CO2 and store it in the soil and above ground as organic matter. Perennial polycultures, agroforestry, and reforestation can sustain and increase both above ground and below ground carbon.
  • Scaling up a small percentage (5-10%) of best practice regenerative and organic systems will result in billions of tons (Gt) of CO2 per year being sequestered into the soil and into continuous, perennial above ground biomass. The identification, funding, and deployment of these best practices on 5-10% or more of the world’s total croplands (4 billion acres), rangelands (8 billion acres), and forestlands (10 billion acres) will be more than enough to draw down and cancel out all the current CO2 and greenhouse gases (43 Gt of CO2) that are currently being emitted, without putting any more CO2 into the atmosphere or the oceans.
  • Currently when carbon dioxide CO2 is released into the atmosphere from the burning of fossil fuels or destructive agriculture or land use practices (currently 43 Gt of CO2 emissions per year), approximately 50% of these 43 Gt of CO2 emissions remain in the atmosphere (21.5 Gt of CO2 annually), while 25% is absorbed by land, plants, and trees (10.75 Gt CO2), and the remainder 25% (10.75 Gt CO2) is absorbed into the ocean. Therefore, we need to begin to draw down 32.25 Gt CO2 (and eventually more) of current total emissions (in conjunction with the conversion to alternative energy and energy conservation), in order to reach net zero emissions (eliminate or cancel out all the emissions going into the atmosphere and the oceans). We will need a net drawdown of 32.75 Gt as soon as possible since 10.75 Gt is already being sequestered by our soils and forests. Once we stop putting more CO2 into the oceans (and the atmosphere), while continuing down the path of alternative energy and regenerative agriculture and land use, the oceans, soils, and biota will be able to draw down evermore significant amounts of the legacy (excess) carbon in the atmosphere, which, in turn, will begin to steadily reduce global warming.
  • Regeneration International, a global regenerative and organic agriculture network, with 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe has begun to help publicize global best practices and coordinate the deployment, funding, and scaling up of these systems.

 

Introduction

Hardly anyone had heard of regenerative agriculture before September 2014, when Regeneration International was founded by a small group of international leaders in the organic, agroecology, holistic management, environment, and natural health movements with the goal of changing the global conversation on climate, farming, and land use.  Now the topic of regenerative agriculture is in the news everyday all around the world.

The concept of a coordinated global regeneration movement was initially put forth at the massive Climate Change March in New York, September 22, 2014, at a press conference in the Rodale Institute headquarters. The press conference brought together a global network of like-minded farmers, ranchers, land managers, consumer, and climate activists.

RI’s first General Assembly was held in Costa Rica in 2015 with participants from every continent.  In five years Regeneration International has grown with 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe. RI and our allies have been successful in promoting the concept of regenerative agriculture as a game-changing system for ecosystem restoration and sequestering carbon dioxide on a scale and timeline appropriate to our current Climate Emergency.

Why Regenerative Agriculture?

Regenerative agriculture is based on a range of farming, livestock management, and land use practices that utilize the photosynthesis of plants and trees to capture CO2 and store it in the soil and above ground. Regenerative agriculture is now being used as a generic term for the many farming systems that use techniques such as longer rotations, cover crops, green manures, legumes, compost, organic fertilizers, holistic livestock management, and agroforestry. However, Regeneration International believes that true regenerative agriculture must be both organic and regenerative.

Other terms describing regenerative agriculture Include: organic agriculture, agroforestry, agroecology, permaculture, holistic grazing, silvopasture, syntropic farming, pasture cropping and other agricultural systems that can increase soil organic matter/carbon. Soil organic matter is an important proxy for soil health—as soils with low levels are not healthy.

The soil holds almost three times the amount of carbon as the atmosphere and biomass (forests and plants) combined. Long term research shows that soil carbon can be stable for more than 100 years, while appropriate forestry and agroforestry practices can store carbon aboveground on a continuous basis.

Managing climate change is a major issue that we have to deal with now

Atmospheric CO2 levels have been increasing at 2 parts per million (ppm) per year. The level of CO2 reached a new record of 400 ppm in May 2016. However, despite all the commitments countries made in Paris in December 2015, the levels of CO2 increased by 3.3 ppm in 2016 creating a record. It increased by 3.3 ppm from 2018 to set a new record of 415.3 ppm in May 2019. Despite the global economic shut down as a response to the COVID-19 pandemic, CO2 levels still set a new record of 417.2 ppm in May 2020. This is a massive increase in emissions per year since the Paris Agreement and shows the reality is that most countries are not even close to meeting their Paris reduction commitments.

Reversing Climate Change

417 ppm far exceeds the Paris objective of limiting the earth’s temperature increase to 2 degrees Celsius.

In order to stabilize atmospheric CO2 levels, regenerative agricultural systems will have to drawdown the current increase of emissions of 3.3 ppm of CO2 per year. Using the accepted formula that 1 ppm CO2 = 7.76 Gt CO2 means that, at a minimum, 25.61 gigatons (Gt) of CO2 per year needs to be drawn down from the atmosphere. But in reality we need to drawdown 31.25 Gt of CO2 or more if we want to stop more CO2 from heating up our already overheated oceans and begin to drawdown the legacy 417 ppm CO2 lodged in the atmosphere.

The Potential of “Best Practices” of Regenerative Agriculture

There are numerous regenerative farming systems that can sequester CO2 from the atmosphere through enhanced plant photosynthesis and turn this CO2 into soil organic matter through the actions of the roots and soil biology – the soil microbiome. Others can increase above ground carbon storage through regenerative forest and agroforestry/silvopasture practices. We don’t have time to waste on farming or land use systems that only sequester small amounts of CO2. We need to concentrate on qualitatively scaling up and expanding systems that can achieve high levels of carbon sequestration and ecosystem restoration, systems that are appropriate and scalable for different countries, regions, cultures, and ecosystems.

The simple back of the envelope calculations used for the examples below are a good exercise to show the world-changing potential of these best practice regenerative systems to address the climate emergency and actually start to reverse global warming.

Agave Agroforestry System

The “Billion Agave Project” is a game-changing ecosystem regeneration strategy recently adopted by a growing number of innovative Mexican farms in the high-desert region of Guanajuato, now spreading across Mexico.

This agroforestry system combines the dense cultivation (800 per acre, 2,000 per hectare) of agave plants and nitrogen-fixing companion tree species (such as mesquite), with holistic rotational grazing of livestock. The result is a high-biomass, high forage-yielding system that works well even on degraded, semi-arid lands.

The system produces large amounts of agave leaf and root stem or piña. When chopped and fermented in closed containers, this plant material produces an excellent, inexpensive silage as animal fodder.

Having a large quantity of fermented animal forage on hand reduces the pressure to overgraze brittle rangelands and improves soil health, water retention, and animal health, while drawing down and storing massive amounts of atmospheric CO2 (270 tons of CO2 stored above ground per hectare on a continuous annual basis after 3-10 years.)

The agave agroforestry system can be scaled up across much of the arid and semi-arid regions of the world using native legume trees and grasses, to form highly productive biodiverse agro-forestry systems that are based on the native species of each region. The chopping and fermentation of the legume tree seed pods, such as mesquite (which fix nitrogen and nutrients into the soil), added to the fermented agave, produce a high protein animal fodder superior to alfalfa and at a fraction of the cost, all without the need for any irrigation or synthetic chemicals whatsoever.

Recent research by Hudson Carbon shows that this agave agroforestry system can sequester 270 tons of CO2 per hectare (109 tons per acre) above ground per year on a continuous basis, without counting below ground sequestration nor the amount of carbon sequestered by the (200 per acre) companion trees.

According to the United Nation Convention to Combat Desertification (UNCCD) approximately 40 per cent of the world’s land (4 billion hectares, 10 billion acres) is composed of deserts and drylands, mainly in Africa, Asia, and Latin America. These areas sustain over two billion people and supply about 60 per cent of the world’s food production. If the organic and regenerative agave agroforestry system was deployed globally on 10% (400 million hectares) of these 4 billion hectares of arid and semi-arid drylands, it would sequester 10.8 Gt of CO2 per year. This represents approximately 1/3 of the amount of CO2 that needs to be sequestered every year to reverse climate change.

BEAM

BEAM (Biologically Enhanced Agricultural Management), developed by Dr. David Johnson of New Mexico State University, produces organic compost with a high diversity of soil microorganisms, especially fungal material. Multiple crops grown with BEAM have achieved very high levels of sequestration and yields. Research published by Dr. Johnson and colleagues show: “… a 4.5-year agricultural field study promoted annual average capture and storage of 10.27 metric tons’ soil C ha-1 year -1 while increasing soil macro-, meso- and micro-nutrient availability offering a robust, cost effective carbon sequestration mechanism within a more productive and long-term sustainable agriculture management approach.” These results are currently being replicated in other trials.

These figures mean that BEAM can sequester 37,700 kilos (37.7 tons) of CO2 per hectare per year which is approximately 15.3 tons of CO2 per acre.

BEAM can be used in all soil based food production systems including annual crops, permanent crops and grazing systems, including arid and semi-arid regions. If BEAM was deployed globally on just 5 % of all (2.5 billion hectares or 12 billion acres) agricultural lands, it would sequester 9.18 Gt of CO2 per year.

Potential of “No Kill No Till” Bio-intensive Organic

Singing Frogs Farm, located just north of San Francisco, California, is a highly productive No Kill No Till richly biodiverse organic, agroecological horticulture farm on 3 acres. The key to their no till system is to cover the planting beds with mulch and compost instead of plowing them, or using herbicides, and planting directly into the compost, along with a high biodiversity of cash and cover crops that are continuously rotated to break weed, disease and pest cycles.

According to Chico State University they have increased the soil organic matter (SOM) levels by 400% in six years. The Kaisers, the owner/operators of Singing Frogs Farm, have increased their SOM from 2.4% to an optimal 7-8% with an average increase of about 3/4 of a percentage point per year. This farming system is applicable to more than 80% of farms around the world as the majority of farmers have less than 2 hectares (5 acres). If the Singing Frogs farm was extrapolated globally across 5% of arable and permanent crop lands it would sequester 8.9 Gt of CO2/yr.

Potential of Regenerative Grazing

There is now a considerable body of published science and evidence based practices showing that regenerative grazing systems can sequester more greenhouse gases than they emit, making them a major solution for reversing climate change.

As well as sequestering CO2, these systems regenerate degraded pasture and rangelands, improve productivity, water holding capacity and soil carbon levels.

Around 68% of the world’s agricultural lands are used for grazing. The published evidence shows that correctly managed pastures can build up soil carbon faster than many other agricultural systems and this is stored deeper in the soil.

Research by published Machmuller et al. 2015: “In a region of extensive soil degradation in the southeastern United States, we evaluated soil C accumulation for 3 years across a 7-year chronosequence of three farms converted to management-intensive grazing. Here we show that these farms accumulated C at 8.0 Mg ha−1 yr−1, increasing cation exchange and water holding capacity by 95% and 34%, respectively.”

The means that they have sequestered 29,360 kilos of CO2 per hectare per year. This is approximately 29,000 pounds of CO2 per acre. If these regenerative grazing practices were implemented on 10 % the world’s grazing lands they would sequester 9.86 Gt of CO2 per year.

Pasture Cropping

Pasture cropping is where the cash crop is planted into a perennial pasture instead of into bare soil. There is no need to plough out the pasture species as weeds or kill them with herbicides before planting the cash crop. The perennial pasture becomes the cover crop.

This was first developed by Colin Seis in New South Wales. The principle is based on the sound ecological fact that annual plants grow in perennial systems. The key is to adapt this principle to the appropriate management system for the specific cash crops and climate.

An excellent example of the development of pasture cropping / no-till no-kill is the Soil Kee, which was designed by Neils Olsen.

First the ground cover/pasture is grazed or mulched to reduce root and light competition. Then the Soil Kee breaks up root mass, lifts and aerates the soil, top-dresses the ground cover/pasture in narrow strips, and plants seeds, all with minimal soil disturbance. The seeds of the cover/cash crops are planted and simultaneously fed an organic nutrient such as guano. The faster the seed germinates and grows, the greater the yield. It is critical to get the biology and nutrition to the seed at germination and to remove root competition.

Pasture cropping is excellent at increasing soil organic matter/soil carbon. Neils Olsen has been paid for sequestering 11 tonnes of CO2 per hectare per year, under the Australian government’s Carbon Farming Scheme in 2019. He was paid for 13 tonnes of CO2 per hectare per year in 2020. He is the first farmer in the world to be paid for sequestering soil carbon under a government regulated system.

If this system were deployed on 10% of all agricultural lands it would sequester 6.38 Gt of CO2 per year.

Global Reforestation

In addition to re-carbonizing and regenerating agricultural lands, a major part of regenerating the Earth and reversing climate change will be to preserve, restore, and expand the world’s 10 billion acres of forests and wetlands.  This reforestation and afforestation will include planting up to a trillion tress in deforested areas, as well as several hundred billion trees and perennials back into the world’s four billion acres of cropland (agroforestry) and eight billion acres of pasturelands or rangeland (silvopasture).

The global tree population, which covers 30% of the Earth’s land area, is estimated to be three trillion trees, with 15 billion trees cut down every year. Since humans began farming, 10,000 years ago, approximately half of the trees on Earth have been cut down and not replanted. The Earth’s forests and wetlands now sequester over 700 billion tons of carbon, and currently draw down, even with massive deforestation and forest fires taken into account, an additional “net sink” of 1.2 gigatons of carbon. (White, Biosequestration and Biological Diversity, p.101) The net sink or carbon sequestration power of today’s forests amounts to approximately 12% of all current human emissions.

If “net deforestation” (more tress being cut down, clear-cut, or burned than the amount of healthy and new tree growth) could be halted in forested areas, especially in tropical areas where the trees grow faster and store the most carbon, and forests worldwide could be managed to increase photosynthesis and biomass through massive reforestation (and by thinning out crowded forest areas with thousands of trees per acre to hundreds of the healthiest and largest trees per acre), the world’s forests could net sequester four billion tons or more of atmospheric carbon a year, a full 40% of all current human emissions.  Along with renewable energy and carbon farming, If we stop deforestation and reforest the Earth with an a trillion, species-appropriate trees, and then maintain these trees, we can literally reverse global warming. 

The United Nations Environmental Project (UNEP) has now announced a new goal for global reforestation and carbon sequestration called the “Trillion Tree Campaign.” The UN points out that there is enough deforested or empty space in rural and urban areas to plant a trillion trees on the planet of which 600 billion mature trees can be expected to survive. And this trillion tree planting campaign does not include the additional 100 billion-plus trees that could and should be planted on the Earth’s 12 billion acres of croplands and pastures utilizing the tried-and-proven carbon sequestering, livestock friendly, fertility-enhancing techniques of agroforestry and silvopasture. UNEP warns however that there are “170 billion trees in imminent risk of destruction,” that must be protected for crucial carbon storage and biodiversity protection.

According to UNEP, “Global reforestation could capture 25 percent of global annual carbon emissions and create wealth in the global south.” More than 13.6 billion trees have already been planted as part of the Trillion Tree Campaign, which analyzes and projects, not only where trees have been planted, but also the vast areas where forests could be restored.

The UN’s Trillion Tree Campaign is inspired in part by a recent study by Dr. Thomas Crowther and others, integrating data from ground-based surveys and satellites, that found that replanting the world’s forests (an additional 1.2 trillion trees) on a massive scale in the empty spaces in forests, deforested areas, and degraded and abandoned land across the planet would draw down 100 billion tons of excess carbon from the atmosphere.

According to Crowther: “There’s 400 gigatons now, in the 3 trillion trees, and if you were to scale that up by another trillion trees that’s in the order of hundreds of gigatons captured from the atmosphere – at least 10 years of anthropogenic emissions completely wiped out… [trees are] our most powerful weapon in the fight against climate change,” he said.

And Crowther’s projections (10 years or 450 Gt of CO2 emissions that can be sequestered via global reforestation) do not include the massive amount of carbon drawdown and sequestration we can achieve through agroforestry and silvopasture practices, planting trees, if only a few trees per acre, on the US and the world’s often deforested 4 billion acres of croplands and 8 billion acres of pasturelands, rangelands, and pastures.

Ending the Climate Emergency- Scaling Up

Regeneration International has 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe. This gives us the ability work with our partner organizations on every arable continent to develop and scale up appropriate regenerative agricultural solutions for multiple countries and regions.

Transitioning a small proportion (10%) of global agricultural production to these evidence based, best-practice, regenerative systems will sequester enough CO2 to reverse climate change and restore the global climate, especially in conjunction with an aggressive global reforestation program such as the Trillion Tree Campaign.

If the RI-sponsored organic and regenerative agave agroforestry system is deployed globally on 10% (400 million hectares) of arid and semi-arid drylands, it will sequester 10.8 Gt of CO2 per year.

Five percent of global agricultural lands regenerated by the BEAM organic compost system can sequester 9.18 Gt of CO2 per year.

Five percent of small holder farms across arable and permanent crop lands using Singing Frogs Farm’s biointensive organic No Kill No Till systems could sequester 8.9 Gt of CO2/yr.

Ten percent of grasslands under regenerative grazing could sequester 9.86 Gt of CO2 per year.

10% of agricultural lands using pasture cropping could sequester 6.38 Gt of CO2 per year.

The deployment of all of these regenerative and organic best practices across the world on 5-10% of all agricultural lands (including arid and semi-arid lands where raising crops and grazing animals are increasingly problematic) would result in 45.12  Gt of CO2 per year being sequestered into the soil, and stored aboveground on a continuous basis, which is 50% more than the amount of sequestration needed to drawdown the 31.25 Gt of CO2 that is currently being released into the atmosphere and the oceans. And this does not include the massive CO2 sequestration that is possible under the Trillion Tree Campaign.

These back of the envelope calculations are designed to show the considerable potential of scaling up proven high performing regenerative systems. The examples are ‘shovel ready’ solutions as they are based on existing practices. There is no need to invest in expensive, potentially dangerous and unproven technologies such as carbon capture and storage or geo-engineering.

Aiming to achieve 5-10% adoption rates for these regenerative and organic practices across the globe is realistic and achievable. The critical priorities are to educate consumers and build market demand, identify and promote regenerative best practices in all the countries and regions of the world, change public policies wherever possible (from the local to the international level) and then fund (through private and public money), expand, and scale up these regenerative and organic systems to restore ecosystems, sequester carbon, regenerate public health and eliminate rural poverty.

It is time to get on with restoring global ecosystems and drawing down excess CO2  by scaling up the existing “best practices” regenerative agriculture, livestock management, forest practices, and land use. All of this is very doable and achievable. It will require substantial investment in natural capital from existing private and public funders and national and international institutions, but it is obviously “worth the cost” compared to the business as usual of our current “suicide economy.” It will require training organizations and relevant NGOs to run courses and workshops from Main Street to the Middle East and beyond, scaled up through grassroots-powered farmer to farmer training systems, and supported by urban consumers across the world. The hour is late. But there is still time to turn things around.

The widespread adoption of best practice regenerative and organic practices should be the highest priority for farmers, ranchers, governments, international organizations, elected representatives, industry, training organizations, educational institutions and climate change organizations. We owe this to future generations and to all the rich biodiversity on our precious living planet.

 

References/sources:

         Johnson D, Ellington J and Eaton W, (2015)  Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix, PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.789v1 | CC-BY 4.0 Open Access | rec: 13 Jan 2015, publ: 13 Jan 2015

Jones C, (2009) Adapting farming to climate variability, Amazing Carbon, www.amazingcarbon.com

Lal R (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, 1: 86–100.

Kulp SA & Strauss BH (2019), New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications, (2019)10:4844,  https://doi.org/10.1038/s41467-019-12808-z, www.nature.com/naturecommunications

McCosker, T. (2000). “Cell Grazing – The First 10 Years in Australia,” Tropical Grasslands. 34:  207-218.

Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D & Thompson A (2014). Emerging land use practices rapidly increase soil organic matter, Nature Communications 6, Article number: 6995 doi:10.1038/ncomms7995, Received 21 June 2014 Accepted 20 March 2015 Published 30 April 2015

NOAS (2017). National Oceanic and Atmospheric Administration (US)

https://www.climate.gov/news-features/climate-qa/how-much-will-earth-warm-if-carbon-dioxide-doubles-pre-industrial-levels, Accessed Jan 30 2017

Rohling EJ, K. Grant, M. Bolshaw, A. P. Roberts, M. Siddall, Ch. Hemleben and M. Kucera (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles, Nature Geoscience, advance online publication,  www.nature.com/naturegeoscience

Spratt D and Dunlop I, 2019, Existential climate-related security risk: A scenario approach, Breakthrough – National Centre for Climate Restoration, Melbourne, Australia

www.breakthroughonline.org.au, May 2019 Updated 11 June 2019

https://docs.wixstatic.com/ugd/148cb0_90dc2a2637f348edae45943a88da04d4.pdf

Tong W, Teague W R, Park C S and Bevers S, 2015, GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains, Sustainability 2015, 7, 13500-13521; doi:10.3390/su71013500, ISSN 2071-1050, www.mdpi.com/journal/sustainability

UNCCD, 2017, The Global Land Outlook 2017, Secretariat of the United Nations Convention to Combat Desertification Platz der Vereinten Nationen 153113 Bonn, Germany

https://knowledge.unccd.int/sites/default/files/2018-06/GLO%20English_Full_Report_rev1.pdf

Global Agricultural Land Figures

United Nation’s Food and Agriculture Organization (FAO),  FAOSTAT data on land use, retrieved December 4, 2015

The total amount of land used to produce food is 4,911,622,700 Hectares (18,963,881 square miles).

This is divided into:

Arable/Crop land: 1,396,374,300 Hectares (5,391,431 square miles)

Permanent pastures: 3,358,567,600 Hectares (12,967,502 square miles)

Permanent crops: 153,733,800 Hectares (593,570 square miles)

The Billion Agave Project Calculations

According to the UNCCD The Global Land Outlook 2017, almost 45 per cent of the world’s agricultural land is located on drylands, mainly in Africa and Asia.

45% of croplands (4,911,622,700 ha x 45%) = 2.2 billion Hectares

2.2 x 270 tons of CO2 per ha = 594 Gt of CO2 per year

BEAM Calculations

A basic calculation shows the potential of scaling up this simple technology across the global agricultural lands. Soil Organic Carbon x 3.67 = CO2 which means that 10.27 metric tons soil carbon = 37.7 metric tons of CO2 per hectare per year (t CO2/ha/yr). This means BEAM can sequester 37.7 tons of CO2 per hectare which is approximately 38,000 pounds of CO2 per acre.

If BEAM was extrapolated globally across agricultural lands it would sequester 185 Gt of CO2/yr. (37.7 t CO2/ha/yr X 4,911,622,700 ha = 185,168,175,790t CO2/ha/yr)

Singing Frogs Farm Calculations

The Kaisers have managed to increase their soil organic matter from 2.4% to an optimal 7-8% in just six years, an average increase of about 3/4 of a percentage point per year (Elizabeth Kaiser Pers. Com. 2018 and Chico State University https://www.csuchico.edu/regenerativeagriculture/demos/singing-frogs.shtml

“An increase of 1% in the level of soil carbon in the 0-30cm soil profile equates to sequestration of 154 tCO2/ha if an average bulk density of 1.4 g/cm3” (Jones C. 2009)

3/4 % OM = 115.5 metric tons of CO2 per hectare (115,500 pounds an acre per year)

This system can be used on arable and permanent crop lands. Arable/Crop land: 1,396,374,300 Hectares plus Permanent crops: 153,733,800 Hectares = 1,550,108,100 Hectares

Extrapolated globally across arable and permanent crop lands it would sequester 179 Gt of CO2/yr (1,550,108,100 Hectares x 115.5 metric tons of CO2 per hectare = 179,037,485,550 metric tons)

Regenerative Grazing Calculations

To explain the significance of Machmuller’s figures: 8.0 Mg ha−1 yr−1 = 8,000 kgs of carbon being stored in the soil per hectare per year. Soil Organic Carbon x 3.67 = CO2, which means that these grazing systems have sequestered 29,360 kgs (29.36 metric tons) of CO2/ha/yr. This is approximately 30,000 pounds of CO2 per acre.

If these regenerative grazing practices were implemented on the world’s grazing lands they would sequester 98.6 Gt CO2/yr.

(29.36t CO2/ha/yr X 3,358,567,600 ha = 98,607,544,736t CO2/ha/yr)

Pasture Cropping Calculations

Agricultural lands 4,911,622,700 ha x 13t CO2/ha/yr = 63.8 Gt of CO2 per year

Global Reforestation Calculations

The Trillion Tree Project

 

Andre Leu is the International Director for Regeneration International. To sign up for RI’s email newsletter, click here.

Ronnie Cummins is co-founder of the Organic Consumers Association (OCA) and Regeneration International. To keep up with RI’s news and alerts, sign up here.

Convierten pulqueros las pencas en forraje, en Nanacamilpa

Para un mejor aprovechamiento de sus magueyes, pulqueros de Nanacamilpa adquirieron una moderna maquinaria para que los residuos de la planta sean convertidos en forraje para alimentar a su ganado.

La tecnificación fue traída como modelo del estado de Guanajuato y, al momento, los resultados en tierras tlaxcaltecas se ven reflejados en un ahorro económico, ya que con esto solventan el alimento de borregos y vacas.

Al respecto, Senobio Becerra García, representante del grupo Pulmex, indicó que el proceso para hacer forraje es simple, toda vez que los residuos de la planta únicamente son molidos con una máquina.

En entrevista, el pulquero detalló que este descubrimiento significa un gran avance, pues también pueden crear una composta de manera natural, ya que, incluso, esta planta puede ser utilizada como abono para los terrenos.

“Estamos adaptando este proyecto para que se convierta en algo redituable, así podemos aprovechar todos los beneficios de nuestras pencas y lo favorable es que no requiere de un periodo de riego”, comentó.

CONTINUE LEYENDO EN EL SOL DE TLAXCALA

Agave Power: Greening the Desert

Read in Spanish here.

Agave, from the Greek word αγαυή, meaning “noble” or “admirable,” is a common perennial desert succulent, with thick fleshy leaves and sharp thorns. Agave plants evolved originally in Mexico, the Southwestern US, and Central America, but are also found today in the hot, arid, and semi-arid drylands of South America, Africa, Oceana, and Asia. Agaves are best known for producing textiles (henequen and sisal) from its fibrous leaves, and alcoholic beverages, tequila, pulque, and mescal, from its sizeable stem or piña, and more recently bio-ethanol from the bagasse or leftover pulp after the piña is distilled.

Agave’s several hundred different varieties are found growing on approximately 20% of the earth’s lands, often growing in the same desertified, degraded cropland or rangeland areas as nitrogen-fixing, deep-rooted trees or shrubs such as mesquite, acacia, or leucaena. Agaves can tolerate intense heat and will readily grow in drylands or semi-desert landscapes where there is a minimum annual rainfall of approximately 10 inches or 250 mm, and where the temperature never drops below 14 degrees Fahrenheit (minus 10 degrees Celsius).

The several billion small farmers and rural families living in the world’s drylands are often among the most impoverished communities in the world, with increasing numbers being forced to migrate to cities or across borders in search of employment. Decades of deforestation, overgrazing, soil erosion, destructive use of agricultural chemicals, and heavy tillage or plowing have severely degenerated the soils, fertility, water retention, and biodiversity of most arid and semi-arid lands. With climate change, limited and unpredictable rainfall, and increasingly degraded soil in these drylands, it has become increasingly difficult to raise traditional food crops (such as corn, beans, and squash in Mexico) or generate sufficient grass and forage for animals. Many dryland areas are in danger of degenerating even further into literal desert, unable to sustain any crops or livestock whatsoever. Besides struggling with degraded landscapes, poverty, and crop failure, social conflict, drug trafficking, and organized crime often plague these areas, forcing millions to migrate to urban areas or across borders to seek employment.

Agaves

Agaves basically require no irrigation, literally drawing moisture directly from the air and storing it in their thick thorny leaves (pencas) and stem or heart (piña) utilizing their Crassulacean Acid Metabolism (CAM) photosynthetic pathway, which enables the plant to grow and produce significant amounts of biomass, even under conditions of severely restricted water availability and prolonged droughts. Agaves reproduce by putting out shoots or hijuelos alongside the mother plant, (approximately 3-4 per year) or through seeds, if the plant is allowed to flower at the end of its 8-13 year (or more) lifespan.

A number of agave varieties appropriate for drylands agroforestry (salmiana, americana, mapisaga) readily grow into large plants, reaching a weight of 650 kilograms (1400 pounds) to one ton in the space of 8-13 years. Agaves are among the world’s top 15 plants or trees in terms of drawing downlarge amounts of carbon dioxide from the atmosphere and producing plant biomass. [Footnote: Park S. Nobel, Desert Wisdom/Agaves and Cacti, p.132] Certain varieties of agave are capable of producing up to 43 tons of dry weight biomass per hectare (17 tons of biomass per acre) or more per year on a continuous basis. In addition, the water use of agaves (and other desert-adapted CAM plants) is typically 4-12 times more efficient than other plants and trees, with average water demand approximately 6 times lower.

Agave-Based Agroforestry

Agave’s nitrogen-fixing, deep-rooted companion trees or shrubs such as mesquite and acacias have adapted to survive in these same dryland environments as well. From an environmental, soil health, and carbon-sequestering perspective, agaves should be cultivated, not as a monoculture, as is commonly done with agave azul(the blue agave species) on tequila plantations in Mexico (often 3,000-4,000 plants per hectare/1215-1600 plants per acre), but as a polyculture. In this polyculture agroforestry system, several varieties of agave are interspersed with native nitrogen-fixing trees or shrubs (such as mesquite or acacias), pasture grass, and cover crops, which fix the nitrogen and nutrients into the soil which the agave needs to draw upon in order to grow and produce significant amounts of biomass/animal forage. If grown as a polyculture, agaves and their companion trees and shrubs can be cultivated on a continuous basis, producing large amounts of biomass and sequestering significant amounts of carbon above ground and below ground, without depleting soil fertility or biodiversity.

In addition to these polyculture practices, planned rotational grazing on these agroforestry pastures not only provides significant forage for livestock, but done properly (neither overgrazing nor under-grazing), further improves or regenerates the soil, eliminating dead grasses, invasive species, facilitating water infiltration (in part through ground disturbance i.e. hoof prints), concentrating animal manure and urine, and increasing soil organic matter, soil carbon, biodiversity, and fertility.

Although agave is a plant that grows prolifically in some of the harshest climates in the world, up until now this plant has been largely ignored, if not outright denigrated. Apart from producing alcoholic beverages, agaves are often considered a plant and livestock pest, along with its thorny, nitrogen-fixing, leguminous companion trees or shrubs such as mesquite and acacias.

But now, the development of a new agave-based agroforestry and holistic livestock management system in the semi-arid drylands of Guanajuato, Mexico, utilizing basic ecosystem restorations techniques, permaculture design, and silage production using anaerobic fermentation, is changing the image of agave and their companion trees. This agave-powered agroforestry and livestock management system is demonstrating that native plants, long overlooked, have the potential to regenerate the drylands, provide large amounts of inexpensive but essential forage for grazing animals, and alleviate rural poverty.

Moving beyond conventional monoculture and chemical-intensive farm practices, and combining the traditional indigenous knowledge of native desert plants and natural fermentation, an innovative group of Mexico-based farmers have learned how to reforest and green their drylands, all without the use of irrigation or expensive and toxic agricultural inputs.

They have accomplished this by densely planting, pruning, and inter-cropping high-biomass, high-forage producing species of agaves (average 2000 per hectare, 810 per acre) among pre-existing deep-rooted, nitrogen-fixing tree or shrub species (500 per hectare) such as mesquite and acacia, or alongside transplanted tree seedlings. These agaves naturally produce large amounts of plant leaf or pencas every year, which can then be chopped up and fermented, turned into silage.  Agave’s perennial silage production far exceeds most other forage production (most of which require irrigation and expensive chemical inputs) with three different varieties (salmiana, americana, and mapisaga) in various locations producing approximately 40 tons per acre or 100 tons per hectare, of fermented silage, annually. The variety crassispina, valuable for its high-sugar piña content for mescal, produces slightly less than 50% of the penca biomass than the other three varieties (average 46.6 tons per year).

The agave silage of the three most productive varieties has a considerable market value of $100 US per ton (up to $4,000 US per acre or $10,000 per hectare gross profit, with 50% of this amount being net profit after subtracting production and labor costs). This system, in combination with rotational grazing, has the capacity to feed up to 60 sheep, lambs or goats per acre/per year or 150 per hectare, doubling net income to S4,000 US per acre or $10,000 per hectare. Once certified as organic, lamb production can easily increase net profits to $5,000 US per acre or $12,000 per hectare annually.

In addition, the agave stem or piña, with a market value of $150 US per ton, harvested at the end of the agave plant’s 8-13 year-lifespan for mescal (a valuable distilled liquor) or inulin (a valuable nutritional supplement) can weigh 150-200 kg. (330-450 pounds), in the three most productive varieties. Again the crassispiña variety has a much smaller piña (160 tons per 2000 plants). The value of the piña from 2000 agave plants for the salmiana, americana, and mapisaga varieties, harvested once, at the end of the plant’s productive lifespan (approximately 10 years) has a market value of $52,500 US per hectare, with the market value for inulin being considerably more.

Combining the market value of the penca and piña of the three most productive varieties we arrive at a total gross market value of $152,500 US per hectare and $61,538 per acre, over 10 years. Adding the value of the 72,000 hijuelos or shoots of 2000 agave plants (each producing an average of 36 shoots or clones) with a value of 12 pesos or 60 cents US per shoot we get an additional $43,200 gross income over 10 years. Total estimated gross income per hectare for pencas ($100,000), pinas ($52,500), and hijuelos ($43,200) over 10 years will be $195,700, with expenses to establish and maintain the system projected to be $13,047 per hectare. As these numbers indicate, this system has tremendous economic potential.

Pioneered by sheep and goat ranchers in the municipality of San Luis de la Paz, Mexico and then expanded and modified by organic farmers and researchers in San Miguel de Allende, “Agave Power” as the new Movement calls itself, is starting to attract regional and even international attention on the part of farmers, government officials, climate activists, and investors. One of the most exciting aspects of this new agroforestry system is its potential to be eventually established or replicated, not only across Mexico, but in a significant percentage of the world’s arid and semi-arid drylands, (including major areas in Central America, Latin America, the Southwestern US, Asia, Oceana, and Africa). Arid and semi-arid drylands constitute, according to the United Nations Convention to Prevent Desertification, 40% of the Earth’s lands.

Alleviating Rural Poverty

Besides improving soils, regenerating ecosystems, and sequestering carbon, the economic impact of this agroforestry system appears to be a long-overdue game-changer in terms of reducing and eliminating rural poverty. Currently 90% of Mexico’s dryland farmers (86% of whom do not have wells or irrigation) are unable to generate any profit whatsoever from farm production, according to government statistics. The average rural household income in Mexico is approximately $5,000-6,000 US per year, derived overwhelmingly from off-farm employment and remittances or money sent home from Mexican immigrants working in the US or Canada. Almost 50% of Mexicans, according to government statistics, are living in poverty or extreme poverty.

The chart below compares the high productivity of agave (in terms of animal forage or silage production) compared to other forage crops, all of which, unlike agave and mesquite, require expensive and/or unavailable irrigation or crop inputs. The second chart compares the productivity, in terms of penca or leaf biomass, from the species salmiana. See appendix for comparisons of other agave species in a number of different locations.

 

Deploying the Agave-Based Agroforestry System

The first step in deploying this agave-powered agroforestry and holistic livestock management system involves carrying out basic ecosystem restoration practices. Restoration is necessary given that most dryland areas suffer from degraded soils, erosion, low fertility, and low rainfall retention in soils. Initial ecosystem restoration typically requires putting up fencing or repairing fencing for livestock control, constructing rock barriers (check dams) for erosion control, building up contoured rows and terracing, subsoiling (to break up hardpan soils), transplanting agaves of different varieties and ages (1600-2500 per hectare or 650-1000 per acre), sowing pasture grasses, as well as transplanting (if not previously forested) mesquite or other nitrogen-fixing trees (500 per hectare or 200 per acre) or shrubs. Depending on the management plan, not all agaves will be planted in the same year, but at times 10-20% per year so as to stagger harvest times for the agave piñas, which are harvested at the end of the particular species’ 8-13- year lifespan.

This in turn is followed by no-till soil management (after initial subsoiling) and sowing pasture grasses and cover crops of legumes, meanwhile temporarily “resting” pasture (i.e. keeping animals out of overgrazed pastures or rangelands) long enough to allow regeneration of forage and survival of young agaves and tree seedlings. Following these initial steps of ecosystem restoration and planting agaves and establishing sufficient tree cover, which can take up to five years, the next step is carefully implementing planned rotational grazing of sheep and goats (or other livestock) across these pasturelands and rangelands, at least during the rainy season (4-6 months per year), utilizing moveable solar fencing and/or shepherds and shepherd dogs (neither overgrazing nor under-grazing); supplementing pasture forage, especially during the six-eight-month dry season, with fermented agave silage. During the dry season many families will choose to keep the breeding stock on their smaller family parcels or paddocks, feeding them fermented silage (either agave or agave/mesquite pod mix) to keep them healthy throughout the dry season, when pasture grasses are severely limited.

By implementing these restoration and agroforestry practices, farmers and ranchers can begin to regenerate dryland landscapes and improve the health and productivity of their livestock, provide affordable food for their families, improve their livelihoods, and at the same time, deliver valuable ecosystem services, reducing soil erosion, recharging water tables, and sequestering and storing large amounts of atmospheric carbon in plant biomass and soils, both aboveground and below ground.

Fermenting the Agave Leaves: A Revolutionary Innovation

The revolutionary innovation of a pioneering group of Guanajuato farmers has been to turn a heretofore indigestible, but massive and accessible source of biomass, the agave leaves or pencas, into a valuable animal feed, utilizing the natural process of anaerobic fermentation to transform the plants’ indigestible saponin and lectin compounds into digestible carbohydrates, sugar, and fiber. To do this they have developed a relatively simple machine, hooked up to a tractor, that can chop up the very tough pruned leaves of the agave. After chopping the agave’s leaves or pencas (into what looks like green coleslaw) they then anaerobically ferment this wet silage (ideally along with the chopped-up protein-rich pods of the mesquite tree) in a closed container, such as a five-gallon plastic container with a lid, removing as much oxygen as possible (by tapping it down) before closing the lid.

The fermented end-product, golden-colored after 30 days, is a nutritious but very inexpensive silage or animal fodder, that costs approximately one Mexican peso (or five cents US) per kilogram/2.2 pounds (fermented agave alone) or two pesos (agave and mesquite pods together) per kilogram to produce. In San Miguel de Allende, the containers we use, during this initial experimental stage of the project cost $3 US per unit for a 20 liter or 5 gallon plastic container or cubeta with a lid, with a lifespan of 25 uses or more before they must be recycled.

This means that the current costs per use of the 20-liter container holding the foraje or silage is 15 cents US or three pesos for 20 liters/kg. This brings the production and storage costs up for fermented agave from one peso (5 cents US) to 1.15 pesos (5.75 US cents) per kilo, far less expensive and resource intensive than alfalfa (4 pesos or 20 cents US per kilo with irrigation required) or hay (4 pesos per kilo), and much more nutritious than corn stalks or rastrojo (2 pesos per kilo). One advantage of these recyclable plastic containers is that a 20-liter container filled with fermented silage weighs only 20 kg or 44 pounds, making it easier to handle. However, Agave Power researchers are now developing silage storage alternatives that will eliminate the necessity for the relatively expensive 20 liter/20 kg plastic cubetas or containers.

The agave silage production system provides the cash-strapped rancher or farmer with an alternative to having to purchase alfalfa (expensive at 20 cents US per kg and water-intensive) or hay (likewise expensive) or corn stalks (labor intensive and nutritionally-deficient), especially during the dry season.

According to Dr. Juan Frias, one of the pioneers of this process, lambs or adult sheep readily convert 10 kilos of fermented agave silage into one kilo of body weight. At five to 10 cents per kilo (two cents per pound), this highly nutritious silage can eventually make the difference between poverty and a decent income for literally millions of the world’s dryland small farmers and herders. Typically, an adult sheep will consume 2-2.5 kilograms of silage every day, while a lamb of up to five months of age will consume 500-800 grams per day.  (Cattle will consume 10 times as much silage per day as sheep, approximately 25 kg per day.) Under the agave system for sheep and goats it costs approximately 20 pesos or one dollar a pound (live weight) to produce what is worth, at ongoing market rates for non-organic mutton or goat, 40 pesos or two dollars per pound. (Certified organic lamb, mutton, or goat will bring in 25-50 percent more). In ongoing experiments in San Miguel de Allende, pigs and chickens have remained healthy and productive with fermented agave forage providing 25% of their diet, reducing feed costs considerably.

The bountiful harvest of this regenerative, high-biomass, high carbon-sequestering system includes not only extremely low-cost, nutritious animal forage (up to 100 tons or more per hectare per year of fermented silage, starting in years three-five, averaged out over ten years), but also high-quality organic lamb, mutton, cheese, milk, aquamiel (agave sap), pulque (a mildly alcoholic beverage), inulin (a nutritional supplement), and distilled agave liquor (mescal), all produced organically with no synthetic chemicals or pesticides whatsoever, at affordable prices, with excess agave biomass fiber, and bagasse available for textiles, compost, biochar, construction materials, and bioethanol.

Regenerative Economics: The Bottom Line

In order to motivate a critical mass of impoverished farmers and ranchers struggling to make a living in the degraded drylands of Mexico, or in any of the arid and semi-arid areas in the world, to adopt this system, it is necessary to have a strong economic incentive.  There absolutely must be economic rewards, both short term and long term, in terms of farm income, if we expect rapid adoption of this system. Fortunately, the agave/mesquite agroforestry system provides this, starting in year three and steadily increasing each year thereafter, producing large amounts of low-cost silage to feed to their livestock and a steady and growing revenue stream from selling their surplus pencaspinas, and silage from their farm or communal lands (ejidos).

Given that these farmers have little or no operating capital, there needs to be a system to provide financing (loans and grants) and technical assistance to deploy this regenerative system and maintain it over the crucial 5-year initiation period. Based upon a decade of implementation and experimentation, we estimate that this agave agroforestry system will cost approximately $1300 US dollars per year, per hectare to establish and maintain, averaged out over a ten-year period. See chart below. By year five, however this system will be able to pay out initial operating loans (upfront costs in years one or one through five are much higher than in successive years) and begin to generate a net profit.

The overwhelming majority of Mexican dryland farmers, as noted previously, have no wells for irrigation (86%) and make little no money (90%) from their subsistence agriculture practices (raising corn, beans, and squash and livestock). Although the majority of rural smallholders are low-income or impoverished, they do however typically own their own (family or self-built) houses and farm sheds or buildings as well as title or ownership to their own parcels of land, typically five hectares (12 acres) or less, as well as their livestock. And beyond their individual parcels, three million Mexican families are also joint owners of communal lands or ejidos, which constitute 56% of total national agricultural lands (103 million hectares or 254 million acres).  Ejidos arose out the widespread land reform and land redistribution policies following the Mexican Revolution of 1910-20. Large landholdings or haciendas were broken up and distributed to small farmers and rural village organizations, ejidos.

Unfortunately, most of the lands belonging to Mexico’s 28,000 communal landholding ejidos are arid or semi-arid with no wells or irrigation. But being an ejido member does give a family access and communal grazing (some cultivation) rights to the (typically overgrazed) ejido or village communally-owned land. Some ejidos including those in the drylands are quite large, encompassing 12,000 hectares (30,000 acres) or more. In contrast to farmers in the US or the rest of the world, most of these Mexican dryland or ejido farmers have little or no debt. For many their bank account is their livestock, which they sell as necessary to pay for out of the ordinary household and personal expenses. As noted earlier, most Mexican farmers today subsist on the income from off-farm jobs by family members, and remittances sent home from family members working in the US or Canada. They understand first hand that climate change and degraded soils are making it nearly impossible for them to grow their traditional milpas (raising corn, beans, and squash during the rainy season) or raise healthy livestock for family consumption and sales. Most are aware that their livestock often cost them as much labor and money to raise (or more) than their value for family subsistence or their value in the marketplace.

Mexico has a total of 2400 municipios or counties located in 32 states. Across Mexico small farmers are already cultivating agave in 1000 municipios and nine states, harvesting piñas for mescal production. None of these areas, however, except for Hacienda Zamarippa in San Luis de la Paz, and Via Organica (and surrounding ejidos) in San Miguel de Allende, Guanajuato, are currently harvesting pencas or agave leaf to produce fermented silage for livestock. However, as the word spreads about the incredible value of pencas and the agave/mesquite agroforestry developing in the state of Guanajuato, farmers in most of the nation’s edijos and municipios will be interested in deploying this system in their areas.

With modest start-up financing, operating capital, and technical assistance (much of which can be farmer-to-farmer training), a critical mass of Mexican smallholders will be able to benefit enormously from establishing this agave-based agroforestry and livestock management system on their private parcels, and benefit even more by collectively deploying this system with their other ejido members on communal lands. With the ability to generate a net income up to $6-12,000 US per year/per hectare of fermented agave silage (and lamb/sheep/livestock production) on their lands, low maintenance costs after initial deployment, and with production steadily increasing three to five years after implementation, this agave system has the potential to spread all across Mexico (and all the arid and semi-arid drylands of the world.)  As tens of thousands and eventually hundreds of thousands of small farmers and farm families start to become self-sufficient in providing 100% of the feed and nutrition for their livestock, dryland farmers will have the opportunity to move out of poverty and regenerate household and rural community economies, restoring land fertility and essential ecosystem services at the same time.

The extraordinary characteristic of this agave agroforestry system is that it generates almost immediate rewards. Starting from seedlings or agave shoots, (hijuelos they are called) in year three in the 8-13-year life-span of these agaves, farmers can begin to prune and harvest the lower plant leaves or pencas from these agaves (pruning approximately 20% of leaf biomass every year starting in year three) and start to produce tons of nutritious fermented animal feed/silage. Individual agave leaves or pencas from a mature plant can weigh more than 20 kilos or 45 pounds each.

Because the system requires no inputs or chemicals, the meat, milk, or forage produced can readily be certified organic, likely increasing its wholesale value in the marketplace. In addition the piñas or plant stem from 2000 agave plants (one hectare) with an average piña per plant of 150-200 kg (3 pesos or 15 cents US per KG) can generate a one-time revenue of $45,000-60,000 US dollars) at the final harvest of the agave plant, when all remaining leaves and stem are harvested. But even as agaves are completely harvested at the end of their 8-13-year life span, other agave seedlings or hijuelos (shoots) of various ages which have steadily been planted alongside side them will maintain the same level of biomass and silage production. In a hectare of 2,000 agave plants, approximately 72,000 hijuelos or new baby plants (averaging 36 per mother plant) will be produced over a ten-year period. These 72,000 baby plants (ready for transplanting) have a current market value over a ten-year period of 12 Mexico pesos (60 cents US) each or $43,200 US ($4,320 US per year).

Financing the Agave-Based Agroforestry System

Although Mexico’s dryland small-holders are typically debt-free, they are cash poor. To establish and maintain this system, as the chart below indicates, they will need approximately $1300 US dollars a year per hectare ($466 per acre) for a total cost over 10 years at $13,047.  Starting in year five, each hectare should be generating $10,000 worth of fermented silage or foraje per year.

By year five, farmers deploying the system will be generating enough income from silage production and livestock sales to pay off the entire 10-year loan. From this point on they will become economically self-sufficient, and, in fact, will have the opportunity to become moderately prosperous. Pressure to overgraze communal lands will decrease, as will the pressure on rural people to migrate to cities or to the US and Canada. Meanwhile massive amounts of atmospheric carbon will have begun to be sequestered above ground and below ground, enabling many of Mexico’s 2400 counties (municipalidades) to reach net zero carbon emissions. In addition, other ecosystem services will improve, including reduced topsoil erosion, more rainfall/water retention in soils, more soil organic matter, increased tree and shrub cover, increased biodiversity (above ground and below ground), restoration of grazing areas, and increased soil fertility.

Natural Carbon Sequestration in Regenerated Soils and Plants

Mexico, like every nation, has an obligation, under the 2015 Paris Climate Agreement, to reduce its greenhouse gas emissions (carbon dioxide, methane, and nitrous oxide) through converting to renewable forms of energy (especially solar and wind) and energy conservation, at the same time, drawing down excess carbon dioxide from the atmosphere and storing, through the process of enhanced forest and plant photosynthesis, this “drawdown” carbon in its biomass, roots, and soil. Agave-based agroforestry (2000 agave plants per hectare) as a perennial system, with the capacity of agave plants to produce 135 kg. per plant of dry weight biomass per hectare over 10 years, can store aboveground approximately 73.6 tons of carbon per hectare (30 tons per acre) over a ten- year period, on a continuous basis, not counting the carbon stored by companion trees or shrubs such as mesquite and acacias. In terms of above ground (and below ground) carbon/carbon dioxide sequestration capacity over 10 years (i.e. 74 tons carbon per year per hectare or 270 tons of CO2e), this system, maintained as a polyculture with continuous perennial growth, is among the most soil regenerative on earth, especially considering the fact that it can be deployed in harsh arid and semi-arid climates, on degraded land, basically overgrazed and unsuitable for growing crops, with no irrigation or chemical inputs required whatsoever. In Mexico, where 60% of all farmlands or rangelands are arid or semi-arid, this system has the capacity to sequester 100% of the nation’s current Greenhouse Gas emissions (590 million tons of CO2e) if deployed on approximately 1.1% or 2.185 million hectares (2000 agaves and 500 mesquites) of the nation’s total lands (197 million hectares). Communally-owned ejido lands in Mexico alone account for more than 100 million hectares. The largest eco-system restoration project in recent until now has been the decade-long restoration of the Loess Plateau (1.5 million hectares) in north-central China in the 1990s.

In a municipalidad or county like San Miguel de Allende, Mexico covering 1,537 Km2 (153,700 hectares) with estimated annual Greenhouse Gas emissions of 654,360 t/CO2/yr (178,300 t/C/yr) the agave/mesquite agroforestry system (sequestering 270 tons of CO2e above ground per hectare continuously after 10 years) would need to be deployed on approximately 2,423 hectares (5,986 acres) or 1.6% of the land in order to cancel out all current emissions. There are 2400 municipalidades or counties in Mexico, including 1000 that are already growing agave and harvesting the pinas for mescal.

In the watershed of Tambula Picachos in the municipality of San Miguel there are 39,022 hectares of rural land (mainly ejido land) in need of restoration (93.4% show signs of erosion, 53% with compacted soil). Deploying the agave/mesquite agroforestry on 2,423 hectares (6.2%) of this degraded land would be enough to cancel out all current emissions in the municipality of San Miguel.

The economic value of growing agave on this 2,423 hectares (including silage, pinas, and hijuelos) averaged out over 10 years would amount to roughly $47.7 million dollars US per year, a tremendous boost to the economy. In comparison, San Miguel de Allende, one of the top tourist destinations in Mexico (with 1.3 visitors annually) brings in one billion dollars a year from tourism, it’s number one revenue generator.

Above ground Carbon Sequestration Figures

 

APPENDIX

Caminos de Regeneración: la agrosilvicultura trabaja con la naturaleza y usa los árboles para cultivar alimentos

BRUSELAS, BÉLGICA – En nuestro último episodio de “Caminos de Regeneración”, exploramos las raíces de la agrosilvicultura y cómo la agricultura industrial ha dejado de lado las antiguas prácticas agrícolas que producen alimentos saludables al mismo tiempo que cuidan el medio ambiente.

Cuando se trata de agricultura, el viejo dicho “la naturaleza es sabia” es totalmente cierto. Trabajar con la naturaleza en lugar de contra ella es una mentalidad que se remonta a principios de la historia de la humanidad, cuando los campesinos dependían del conocimiento y las tradiciones ancestrales para cultivar alimentos.

Nuestro nuevo episodio, “La agrosilvicultura en la actualidad, parte 1: Una breve historia de la agrosilvicultura”, presenta a Patrick Worms, asesor de política científica del Centro Mundial de Agrosilvicultura con sede en Nairobi y presidente de la Federación Agroforestal Europea.

La agrosilvicultura es una forma de agricultura que combina árboles y arbustos con cultivos alimentarios. Da prioridad a la naturaleza y es una de las formas más antiguas de agricultura. La agrosilvicultura considera que el paisaje natural y la integración de los árboles crean un sistema alimentario con beneficios ambientales, sociales y económicos.

Worms ha pasado décadas investigando y desarrollando sistemas agroforestales en todo el mundo. Es uno de los pocos cabilderos políticos y científicos en temas agroforestales en Bruselas y en otras partes de Europa, donde aporta su experiencia en políticas agrícolas.

Agrosilvicultura: el arte de leer un paisaje para mejorar la productividad agrícola

En una entrevista de Zoom con Regeneration International, Worms explicó cómo la introducción de tecnología moderna en el sector agrícola (pesticidas, fertilizantes sintéticos y equipos agrícolas como tractores, arados y cosechadoras) ha hecho que miles de años de evolución agrícola utilizando árboles hayan llegado a un camino sin salida.

El lado positivo es que a medida que las limitaciones de la agricultura industrializada se vuelven más obvias, estamos redescubriendo la sabiduría del antiguo conocimiento agroforestal, dijo Worms.

En el Centro Mundial de Agrosilvicultura, Worms está trabajando en nuevas formas de implementar sistemas agroforestales en todo el mundo y en regiones que se enfrentan a la escasez de alimentos y a los impactos del cambio climático y la desertificación.

“Si observas esos paisajes, son paisajes agroforestales típicos con jardines de múltiples estratos, plantas anuales en el suelo, enredaderas que trepan por los árboles, arbustos de tamaño medio y árboles más altos con animales y cultivos en el medio”.

La agrosilvicultura, una práctica tan antigua como la historia humana.

Los ejemplos de sistemas agroforestales se encuentran en todo el mundo y han estado presentes a  lo largo de la historia de la humanidad. Desde la domesticación del árbol del cacao en América Central y del Sur, hasta la higuera, que se originó en el suroeste de Asia y es una de las frutas más antiguas consumidas por los humanos, los sistemas agroforestales han producido algunos de los alimentos más populares de la actualidad.

Los primeros humanos que practicaban la agrosilvicultura desarrollaron sistemas agrícolas exitosos no porque tuvieran científicos con batas blancas de laboratorio, sino porque tenían un proceso constante de prueba y error. Las prácticas que eran exitosas eran adoptadas y transmitidas, y las que salían mal eran abandonadas, dijo Worms, y agregó:

“Pero la modernidad ha acabado todo eso. El conocimiento que nuestros antepasados adquirieron minuciosamente por milenios ​​ha desaparecido por completo”.

Reemplazar las prácticas agrícolas basadas en miles de años de conocimiento ancestral por una agricultura industrial dependiente de productos químicos ha degradado el suelo, eliminado la biodiversidad, despojado los alimentos de los nutrientes esenciales y esclavizado y endeudado a los campesinos con las principales corporaciones agrícolas.

La buena noticia es que el retorno a la agrosilvicultura y la ampliación de los sistemas de agricultura orgánica y regenerativa pueden revertir el daño causado por la agricultura industrial.

Los sistemas alimentarios y agrícolas que trabajan en armonía con en el medio ambiente absorben y almacenan carbono en el suelo y gracias a eso pueden mejorar el sustento social y económico de los campesinos, reconstruir la salud del suelo, promover la biodiversidad y las cuencas hidrográficas limpias, producir alimentos saludables y mitigar el cambio climático.

 Esto es precisamente lo que describió Food Tank: The Think Tank For Food de manera tan elocuente en octubre de este año:

“Si queremos proteger nuestro planeta y tener alimentos saludables en nuestra mesa, la agroecología es el camino a seguir”.

Para obtener más información sobre la agrosilvicultura y algunas de las mejores prácticas que se implementan en la actualidad, permanezca atento al próximo episodio, “La agrosilvicultura en la actualidad, parte 2: Las buenas prácticas de hoy”, en esta serie de dos partes.

 

Oliver Gardiner representa a Regeneration International en Europa y Asia. Julie Wilson, asociada de comunicaciones de la Asociación de Consumidores Orgánicos (OCA), contribuyó a este artículo. Para mantenerse al día con noticias y eventos, regístrese aquí para recibir el boletín de Regeneración Internacional.

 

Trails of Regeneration: Agroforestry Works With Nature, Uses Trees to Grow Food

BRUSSELS, BELGIUM – In our latest “Trails of Regeneration” episode, we explore the roots of agroforestry and how industrial agriculture has pushed aside ancient farming practices that produce healthy food while also caring for the environment. 

The old saying “nature knows best” rings true when it comes to agriculture. Working with nature instead of against it is a mindset that dates back early in human history when farmers relied on ancestral knowledge and traditions to grow food. 

Our new episode, “Agroforestry Today Part 1: A Brief History of Agroforestry,” features Patrick Worms, senior science policy advisor for the Nairobi-based World Agroforestry Centre and president of the European Agroforestry Federation.

Agroforestry is a form of agriculture that incorporates trees and shrubs with food crops. It puts nature first and is one of the most ancient forms of farming. Agroforestry considers the natural landscape and the integration of trees to create a food system with environmental, social and economic benefits. 

Worms has spent decades researching and developing agroforestry systems around the world. He is one of a handful of political and scientific agroforestry lobbyists in Brussels and elsewhere in Europe where he lends his expertise on agricultural policies.

Agroforestry: The art of reading a landscape to enhance agricultural productivity 

In a Zoom interview with Regeneration International, Worms explained how the introduction of modern technology in the agricultural sectorthink pesticides, synthetic fertilizers and farming equipment such as tractors, plows and combineshas in many ways brought thousands of years of agricultural evolution using trees to a standstill. 

The bright side is that as the limitations of industrialized agriculture become more obvious, we are rediscovering the wisdom of ancient agroforestry knowledge, said Worms. 

At the World Agroforestry Centre, Worms is working on new ways to implement agroforestry systems worldwide and in regions faced with food shortages and the impacts of climate change and desertification. 

Trees have proven to be an important resource through human history. Trees provide food and fuel, help fertilize soils and protect farmland from pests, diseases and extreme weather conditions. 

Combining trees, shrubs and grasses with food crops and livestock creates a functional ecosystem that’s efficient at producing a variety of healthy foods. In the featured video, Worms explains that natural landscapes where fruits and grasses grow together almost always have trees in them. 

Farmers learned early on the benefits of growing food alongside trees

Farmers who saved and planted seeds harvest after harvest learned early on that trees are beneficial when grown with certain food crops, said Worms. A good example of this exists in the high plateaus of Papua New Guinea, an island researchers believe is where the banana was first domesticated

Humans first settled in Papua New Guinea about 50,000 to 60,000 years ago. Despite the cool-to-cold climate, agriculture was in full swing in the region’s highlands by 7,000 B.C. The environment, dotted with swamps and rich in flora and fauna, helped make it one of the few areas of original plant domestication in the world. 

Early foods systems such as those in Papua New Guinea are prime examples of ancient agroforestry, said Worms, adding: 

“If you look at those landscapes, they are typical agroforestry landscapes with multi-strata gardens, annuals on the ground, vines climbing along with trees, mid-level shrubs and taller trees with animals and crops in between.”

Agroforestry is practiced throughout ancient human history

Examples of agroforestry systems span the globe throughout human history. From the domestication of the cacao tree in Central and Latin America, to the fig treewhich originated in southwest Asia and is one of the oldest fruits eaten by humansagroforestry systems have produced some of today’s most popular foods.

Early humans that practiced agroforestry developed successful farming systems not because they had scientists in white lab coats, but because they had a constant process of trial and error. The good things were adopted and passed on, and the bad things were abandoned, said Worms, adding: 

“But modernity has swept that away. Knowledge that was painstakingly gained by millennia of our ancestors has completely disappeared.”

Replacing farming practices based on thousands of years of ancestral knowledge with chemical-dependent industrial agriculture has degraded the soil, eliminated biodiversity, stripped food of essential nutrients and enslaved and indebted farmers to major agriculture corporations. 

The good news is that a return to agroforestry and the scaling up of organic and regenerative agriculture systems can reverse the damage caused by industrial agriculture. 

Environmentally focused food and farming systems can improve the social and economic livelihood of farmers, rebuild soil health, promote biodiversity and clean watersheds, produce healthy food and mitigate climate change by drawing down and storing carbon in the soil. 

As Food Tank: The Think Tank For Food wrote so eloquently in October: 

“If we are going to protect our planet and keep healthy food on our table, agroecology is the way forward.”

To learn more about agroforestry and some of today’s best practices, stay tuned for the next episode, “Agroforestry Today P 2: Today’s Good Practices,” in this two-part series.

Oliver Gardiner represents Regeneration International in Europe and Asia. Julie Wilson, communications associate for the Organic Consumers Association (OCA), contributed to this article.

To keep up with news and events, sign up here for the Regeneration International newsletter.