Posts

Livestock’s Role in a Changing Climate

Edward Bork’s research surrounding how livestock grazing affects soil carbon has made him a believer in the beneficial role cattle can potentially play in a changing climate.

“Because their grazing contributes to the concentration of carbon in the soil – a helpful process – livestock can be a tool to help reduce atmospheric carbon and thus mitigate climate change,” says Bork, director of the Rangeland Research Institute, University of Alberta.

Cattle critics say otherwise, calling for decreases in numbers or even elimination of ruminants as a means of reducing the greenhouse gases contributing to climate change. They point to the methane cattle emit as a key polluter of the atmosphere. Methane is a potent greenhouse gas that ruminants put out as part of their digestive process.

Bork calls for a balanced view, one that weighs the drawbacks against the benefits.

“Pointing the finger at methane emissions of livestock is a convenient excuse people use,” he says. “It’s a red herring to claim that cattle are destroying the planet and ignores the fact that these grasslands evolved with grazing – and even depend on it to exist.

KEEP READING ON SUCCESSFUL FARMING

El cambio de uso de tierra tiene un gran impacto sobre el carbono almacenado en los manglares

Los bosques de manglares son importantes para los medios de vida de millones de personas que viven en las zonas costeras. Son fuente de recursos pesqueros, protegen a las comunidades de tormentas y de la erosión costera y ofrecen innumerables beneficios.

Sin embargo, estos servicios son severamente subestimados, y, por lo tanto, los manglares están propensos a la conversión para otros usos de la tierra que ofrecen un beneficio económico inmediato. Estamos perdiendo este ecosistema único de humedales a una gran velocidad, y los impactos que la pérdida de los manglares tiene sobre los importantes beneficios que ofrecen es poco conocido.

Uno de los beneficios que ofrecen los manglares, y que es especialmente importante, es su habilidad de absorber emisiones de carbono de la atmósfera y almacenarlas como “carbono azul” en sus partes leñosas y en los suelos anegados. Esto hace de los manglares una herramienta efectiva para mitigar el cambio climático a nivel global.

Pero ¿qué es lo que sucede con esta enorme cantidad de carbono almacenado cuando se perturba a los manglares?

CONTINUE LEYENDO EN PERIODICO MENSAJE

Global Alliance for Organic Districts: Scaling Up Organic Agriculture

The COVID-19 pandemic has highlighted the importance of resilient local food systems that promote healthy people, environmental stewardship and a strong local economy. Lobbying governments around the world to adopt and support organic regenerative farming practices is paramount to establishing and maintaining local food systems and access to healthy food. 

During these trying times, Regeneration International (RI) has remained steadfast in its efforts to spread the word about organic regenerative agriculture to local governments, municipalities, cities and regions worldwide.

Our latest endeavor includes participating in the virtual launch of the first Global Alliance for Organic Districts (GAOD), an alliance announced on World Food Day 2020 between Asian Local Governments for Organic Agriculture (ALGOA) and the International Network of Eco Regions (I.N.N.E.R.). 

The goal is for the initiative to create synergy between groups working to promote organic regenerative agriculture across the globe. It’s supported by several founding member organizations including RI, IFOAM Organics International, IFOAM Organics Asia and the League of Organic Agriculture Municipalities and Cities of the Philippines (LOAMCP).

RI’s role in the alliance is to promote and highlight soil health as the most effective tool to curb climate change while providing local communities with nutrient-dense food. 

GAOD and its partners also joined and have voiced their support for the 4Per1000 Initiative: Soils for Food Security and Climate, a project launched in 2015 at the United Nations Climate Change Conference in Paris, France. 

The initiative provides an international framework on how to demonstrate the role of agriculture and healthy soil in addressing food security and climate change. 

The project recently launched a strategic plan to use carbon-rich soil to stop climate change and end world hunger by 2050, and by 2030 the project aims to: 

“. . . provide a supportive framework and action plan to conceptualize, implement, promote and follow up actions, on soil health and soil carbon, through an enhanced collaboration between stakeholders of the agriculture, forestry and other land use sectors, in line with the UN Sustainable Development Goals.”

During the virtual online summit, GAOD’s co-president Salvatore Basile expressed his gratitude  and acknowledged the importance of the 4Per1000 Initiative to provide a framework on agricultural climate mitigation for local policymakers worldwide. He said: 

“From this day, we will promote the potential of organic regenerative agriculture to mitigate climate and build resilient local economies to mitigate the growing environmental threats global communities are facing.”

In a video message aired at the online event, Paul Luu, an agronomist specialized in tropical agronomy and executive secretary of the 4Per1000 Initiative, thanked GAOD, ALGOA and I.N.N.E.R. for becoming members of the project.

“This is an important and strong signal to local authorities to encourage and promote carbon sequestration in soils through appropriate agriculture and forestry practices. Agroecology will remain a mere concept if no farmer or forester implement appropriate practices in their fields or forests and if local authorities do not work to create an enabling environment for such practices.” 

Through the work happening on-the-ground at Via Organica, the Mexico-based sister organization of the Organic Consumers Association, RI will provide GAOD’s 4Per1000 task force groups with insights for implementing localized agriculture designed to mitigate climate change. 

The project at Via Organica, based in San Miguel de Allende, provides training to local communities on how to reforest landscapes with the planting of mesquite (which has nitrogen-fixing capacities) and agave, which has tremendous power to grow in extreme dryland conditions while sequestering huge amounts of carbon with its increased biomass. 

The agave then gets converted into a low-cost animal feed for local sheepherders who practice holistic grazing methods. 

A recently published [LINK] video featuring RI’s Latin America Director Ercilia Sahores and Francisco Peyret, the environment director for the city San Miguel de Allende, showcases the innovative agave-mesquite model. 

“We want to implement the goals of the ‘4Per1000’ Initiative, and this means taking action. This year, we are planting 2,000 hectares [of agave and mesquite] and we have 20,000 hectares that we want to convert into productive and regenerate areas,” said Pevret.

The agave planting project and the work being done at Via Organica has inspired officials in the  Guanajuato government to launch their own pilot project. 

In the featured video, Sahores said: 

“Change happens at the local level, and that is from where we need to act and gather our forces. GAOD and the RI network can have a greater influence on public policies, bringing to evidence that the health of food and climate are one.”

 RI’s participation in the ALGOA/GAOD summit contributed to a working group that includes participants from every continent on the globe to discuss the main challenges for scaling up regenerative agriculture.

The working group identifies what the challenges are, how they can be overcome and what GAOD can do to assist in that mission. 

We found that many of these needs are universal, including access to land, fair compensation for farmers to maintain and regenerate ecosystems, consumer awareness, and training on regenerative agriculture practices.

Stay tuned for more updates on the global regeneration front. 

Oliver Gardiner represents Regeneration International in Europe and Asia. 

To keep up with news and events, sign up here for the Regeneration International newsletter.

Peatlands Keep a Lot of Carbon out of Earth’s Atmosphere, but That Could End with Warming and Development

But that might not be true for much longer. Warming temperatures and human actions, such as draining bogs and converting them for agriculture, threaten to turn the world’s peatlands from carbon reservoirs to carbon sources.

In a newly published study, our multidisciplinary team of 70 scientists from around the world analyzed existing research and surveyed 44 leading experts to identify factors that could change peatlands’ carbon balance now and in the future. We found that permafrost degradation, warming temperatures, rising sea levels and drought are causing many peatlands around the world to lose some of their stored carbon. This is in addition to rapid degradation caused by human activity. And unless steps are taken to protect peatlands, carbon loss could accelerate.

KEEP READING ON THE CONVERSATION

Blue Carbon: The Climate Change Solution You’ve Probably Never Heard Of

This is the eighth part of Carbon Cache, an ongoing series about nature-based climate solutions.

Gail Chmura, a professor at McGill University, had recently joined the school’s geography department in the late 1990s when some of her colleagues were trying to solve a mystery. They were looking at global carbon budgets, and the numbers weren’t adding up. There was a missing carbon sink, sequestering a whole lot of carbon, and nobody knew what it was. They wondered if Canada’s peatlands were part of the missing sink.

Meanwhile, Chmura was sampling salt marshes in the Bay of Fundy, which spans between New Brunswick and Nova Scotia. Few people had paid salt marshes any attention as carbon sinks because the data showed pretty low levels of carbon at a first glance. But Chmura had a lightbulb moment.

Researchers had been looking at the percentage of carbon in salt marshes by weight. In peatlands, this makes sense because they are almost entirely made of organic matter, which is where carbon is stored in soil.

KEEP READING ON THE NARWHAL

Fungi Have Unexpected Role to Play in Fight Against Climate Change

TAIPEI (Taiwan News) — Planting more trees seems like a logical way of counteracting climate change, as forests facilitate carbon sequestration, the process of capturing and storing atmospheric carbon dioxide (CO2), but as efforts to remove CO2 from the atmosphere intensify, organisms from another kingdom — fungi — are showing they have an indispensable role to play in this process.

“Almost all plant life coexists with fungi during a certain period, if not the entire life cycle of a plant, but the reasons for this coexistence and its effects have not yet been fully deciphered,” said Ko-Hsuan “Koko” Chen, an assistant research fellow at Academia Sinica’s Biodiversity Research Center. Her lab studies plant-fungal symbiosis, especially between fungi and early photosynthetic organisms such as mosses.

Funguses are commonly used as ingredients in food and in medicines. However, their dynamic relationship with plants is not so well known and is significantly tied to the prosperity of plant species and element cycles, which are defined as the biogeochemical pathways in which elements are transformed by natural processes.

KEEP READING ON TAIWAN NEWS

Unlocking the Potential of Soil Can Help Farmers Beat Climate Change

Farmers are the stewards of our planet’s precious soil, one of the least understood and untapped defenses against climate change. Because of its massive potential to store carbon and foundational role in growing our food supply, soil makes farming a solution for both climate change and food security.

The threat to food security

Farming is capital-intensive and farmers are at the mercy of volatile global commodity markets, trade disputes, regulatory changes, weather, pests, and disease. Factor in climate change and you can include droughts, floods and temperature shifts.

We need to change how we grow our food because:

  • climate change will increasingly impact farm yields
  • how we farm can help mitigate climate change
  • helping our farmers unlock the full potential of soil will help them meet growing food demands while remaining profitable
  • restoring the carbon-holding potential of our soil combats climate change.

Soil and climate change

The last few years have been among the hottest on record. As of May 2020, the concentration of carbon dioxide (CO2)​​​​​​​ in our atmosphere has been the highest it’s been in human history.

El polvo de roca aplicado a campos agrícolas podría ayudar a capturar 2B de toneladas de CO2

El polvo de roca que se extiende sobre los campos agrícolas del planeta puede ser una solución climática con el potencial de eliminar hasta dos mil millones de toneladas de dióxido de carbono (CO2) de la atmósfera, según investigadores británicos.

Eso es más que las industrias mundiales de aviación y transporte marítimo combinadas, o aproximadamente la mitad de las emisiones actuales de Europa. La investigación publicada la semana pasada en la revista Nature analiza cómo la técnica podría usarse en diferentes países, con optimismo sobre cómo algunos de los emisores de CO2 más altos del mundo, incluidos China, India y Brasil, son los más beneficiados en términos de eliminación de CO2.

El equipo de científicos, dirigido por David Beerling del Centro Leverhulme para la Mitigación del Cambio Climático de la Universidad de Sheffield, también incluyó expertos de instituciones en los Estados Unidos y Bélgica, entre ellos el líder mundial del clima James Hansen del Instituto de la Tierra en la Universidad de Columbia. Explican cómo la meteorización de rocas, como se conoce la técnica, también podría proporcionar un uso de economía circular para subproductos mineros y materiales de construcción reciclados.

CONTINUE LEYENDO EN ECOPORTAL

Applying Rock Dust to Croplands Could Absorb up to 2 Billion Tonnes of CO2 from the Atmosphere, Research Shows

  • Major new study shows adding rock dust to farmland could remove carbon dioxide (CO2) equivalent to more than the current total emissions from global aviation and shipping combined – or around half of Europe’s current total emissions
  • Research identifies the nation-by-nation potential for CO2 drawdown, as well as the costs and the engineering challenges involved
  • Findings reveal the world’s highest emitters (China, India and the US) also have the greatest potential to remove CO2 from the atmosphere using this method
  • Scientists suggest unused materials from mining and the construction industry could be used to help soils remove CO2 from the atmosphere

Adding crushed rock dust to farmland could draw down up to two billion tonnes of carbon dioxide (CO2) from the air per year and help meet key global climate targets, according to a major new study led by the University of Sheffield.

The technique, known as enhanced rock weathering, involves spreading finely crushed basalt, a natural volcanic rock, on fields to boost the soil’s ability to extract CO2 from the air.

In the first nation-by-nation assessment, published in Nature, scientists have demonstrated the method’s potential for carbon drawdown by major economies, and identified the costs and engineering challenges of scaling up the approach to help meet ambitious global CO2 removal targets. The research was led by experts at the University of Sheffield’s Leverhulme Centre for Climate Change Mitigation, and the University’s Energy Institute.

Meeting the Paris Agreement’s goal of limiting global heating to below 2C above pre-industrial levels requires drastic cuts in emissions, as well as the active removal of between two and 10 billion tonnes of CO2 from the atmosphere each year to achieve net-zero emissions by 2050. This new research provides a detailed initial assessment of enhanced rock weathering, a large-scale CO2 removal strategy that could make a major contribution to this effort. 

The authors’ detailed analysis captures some of the uncertainties in enhanced weathering CO2 drawdown calculations and, at the same time, identifies the additional areas of uncertainty that future work needs to address specifically through large-scale field trials.

The study showed that China, the United States and India – the highest fossil fuel CO2 emitters – have the highest potential for CO2 drawdown using rock dust on croplands. Together, these countries have the potential to remove approximately 1 billion tonnes of CO2 from the atmosphere, at a cost comparable to that of other proposed carbon dioxide removal strategies (US$80-180 per tonne of CO2).

Indonesia and Brazil, whose CO2 emissions are 10-20 times lower than the US and China, were also found to have relatively high CO2 removal potential due to their extensive agricultural lands, and climates accelerating the efficiency of rock weathering.

The scientists suggest that meeting the demand for rock dust to undertake large-scale CO2 drawdown might be achieved by using stockpiles of silicate rock dust left over from the mining industry, and are calling for governments to develop national inventories of these materials.

Calcium-rich silicate by-products of iron and steel manufacturing, as well as waste cement from construction and demolition, could also be processed and used in this way, improving the sustainability of these industries. These materials are usually recycled as low value aggregate, stockpiled at production sites or disposed of in landfills. China and India could supply the rock dust necessary for large-scale CO2 drawdown with their croplands using entirely recycled materials in the coming decades.

The technique would be straightforward to implement for farmers, who already tend to add agricultural lime to their soils. The researchers are calling for policy innovation that could support multiple UN Sustainable Development Goals using this technology. Government incentives to encourage agricultural application of rock dust could improve soil and farm livelihoods, as well as reduce CO2, potentially benefiting the world’s 2.5 billion smallholders and reducing poverty and hunger.

Professor David Beerling, Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield and lead author of the study, said: “Carbon dioxide drawdown strategies that can scale up and are compatible with existing land uses are urgently required to combat climate change, alongside deep and sustained emissions cuts. 

“Spreading rock dust on agricultural land is a straightforward, practical CO2 drawdown approach with the potential to boost soil health and food production. Our analyses reveal the big emitting nations – China, the US, India – have the greatest potential to do this, emphasising their need to step up to the challenge. Large-scale Research Development and Demonstration programmes, similar to those being pioneered by our Leverhulme Centre, are needed to evaluate the efficacy of this technology in the field.”

Professor Steven Banwart, a partner in the study and Director of the Global Food and Environment Institute, said: “The practice of spreading crushed rock to improve soil pH is commonplace in many agricultural regions worldwide. The technology and infrastructure already exist to adapt these practices to utilise basalt rock dust. This offers a potentially rapid transition in agricultural practices to help capture CO2 at large scale.”

Professor James Hansen, a partner in the study and Director of the Climate Science, Awareness and Solutions Program at Columbia University’s Earth Institute, said: “We have passed the safe level of greenhouse gases. Cutting fossil fuel emissions is crucial, but we must also extract atmospheric CO2 with safe, secure and scalable carbon dioxide removal strategies to bend the global CO2 curve and limit future climate change. The advantage of CO2 removal with crushed silicate rocks is that it could restore deteriorating top-soils, which underpin food security for billions of people, thereby incentivising deployment.”

Professor Nick Pidgeon, a partner in the study and Director of the Understanding Risk Group at Cardiff University, said: “Greenhouse gas removal may well become necessary as we approach 2050, but we should not forget that it also raises profound ethical questions regarding our relationship with the natural environment. Its development should therefore be accompanied by the widest possible public debate as to potential risks and benefits.”

Ends

Contact

Sophie Armour, Media & PR Officer at the University of Sheffield: 07751 400 287 / 0114 222 3687 / sophie.armour@sheffield.ac.uk 

Notes

Embargoed study available here: https://drive.google.com/file/d/1m2zUuQMTd_KeJwH9wcNT8jHukHDOKKAs/view?usp=sharing 

FAQs on carbon drawdown with enhanced weathering developed by the Leverhulme Centre for Climate Change Mitigation are available here: https://lc3m.org/faqs/

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world’s leading universities.

A member of the UK’s prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

About the Leverhulme Trust

The Leverhulme Trust was established by the Will of William Hesketh Lever, the founder of Lever Brothers. Since 1925 the Trust has provided grants and scholarships for research and education.

Today, it is one of the largest all-subject providers of research funding in the UK, currently distributing £100 million each year. The Leverhulme Centre for Climate Change Mitigation at the University of Sheffield is part of a network of seven Leverhulme Trust research centres based in universities throughout the UK.

For more information about the Trust, please visit www.leverhulme.ac.uk  and follow the Trust on Twitter @LeverhulmeTrust

What Kelp Forests Can Do for the Climate

Sixty years ago, Tasmania’s coastline was cushioned by a velvety forest of kelp so dense it would ensnare local fishers as they headed out in their boats. “We speak especially to the older generation of fishers, and they say, ‘When I was your age, this bay was so thick with kelp, we actually had to cut a channel though it,’” says Cayne Layton, a postdoctoral research fellow at the Institute for Marine and Antarctic Studies at the University of Tasmania. “Now, those bays, which are probably at the scale of 10 or 20 football fields, are completely empty of kelp. There’s not a single plant left.”

Since the 1960s, Tasmania’s once expansive kelp forests have declined by 90% or more. The primary culprit is climate change: These giant algae need to be bathed in cool, nutrient-rich currents to thrive, yet regional warming in recent decades has extended the waters of the warmer East Australian Current into Tasmanian seas to devastating effect, wiping out kelp forests one by one. Warming waters have also boosted populations of predatory urchins, which gnaw on kelp roots and compound the loss.

Tasmania isn’t the only site of destruction. Globally, kelp grow in forests along the coastlines of every continent except Antarctica; most of these are threatened by climate change, coastal development, pollution, fishing, and invasive predators. All of this matters because these ecosystems provide huge benefits: They cushion coastlines against the effect of storm surges and sea level rise; they cleanse water by absorbing excess nutrients; and they also slurp up carbon dioxide, which can help drive down ocean acidity and engineer a healthy environment for surrounding marine life. These forests—which in the case of the giant kelp species that grows in Tasmania, can reach heights of 130 feet—also provide habitat for hundreds of marine species.

Having spent years studying these benefits, Layton is now trying to bring a patch of Tasmania’s struggling kelp forests back to life. Every few weeks, he dives out to inspect three 39-by-39-feet plots he’s created off the coast, each containing fronds of baby kelp, springing from ropes that are tethered to the ocean floor. These kelp nurseries are part of Layton’s project to determine whether climate-resilient “super-kelp” that has been raised in a laboratory will fare better in Tasmania’s changing seas. But his experiment also brings attention to the extraordinary potential of kelp to absorb carbon and help tackle climate change.

Climate-Forward Kelp

The capacity to draw CO2 from the atmosphere has added “climate mitigation” to kelp’s list of benefits. When we talk about ways oceans can sequester carbon, the conversation typically revolves around mangroves, salt marshes, and seagrass meadows. But “the magnitude of carbon sequestered by algal forests is comparable to that of all those three habitats together,” says Carlos Duarte, a professor of marine science at the King Abdullah University of Science and Technology in Saudi Arabia. “Algal forests should not be left behind. They have been hidden for much too long.”

There’s a lot we still don’t understand about how kelp store CO2. But researchers are starting to build a better picture of this giant seaweed and how we might improve its capacity to help tackle climate change.

The dilemma is that kelp itself is also under siege from warming seas—which is the focus of Layton’s work. Of Tasmania’s original forest, only around 5% remains. Researchers think these plants have survived through natural variation and selection.

“There do seem to be individuals that are adapted and capable of living in the modern conditions in Tasmania that we have created through climate change,” Layton explains.

From this remaining pool of wild giant kelp, he and his colleagues have identified what Layton calls “super kelp” that may be more resilient against the effects of warming seas. From these he has harvested spores, embedding them in twine to be wound around the ropes that are rooted into the sea floor. The hope is that these super kelp spores will develop into saplings that will in turn set their own spores adrift on ocean currents, seeding new mini-forests nearby.

“For giant kelp restoration to work at the scale of the coastline, we’ll need to plant many of these seed patches,” Layton explains. “The idea is that, over time, those will self-expand, and eventually coalesce—and there’s your giant kelp forest back.”

Other kelp restoration projects around the world are tackling different threats. In Santa Monica Bay, California, conservationists are trying to save local kelp forests from voracious purple urchins, whose population has exploded since a major predator—the sea otter—dramatically declined decades ago. The urchins’ unchecked appetite has contributed to the loss of three-quarters of the bay’s former kelp forest. But fishers are carefully hand-clearing urchins—the draw being that as kelp is restored, fisheries are too. So far they’ve managed to clear 52 acres (21 hectares), which the kelp forest has reclaimed.

“All we had to do is clear the urchins out of the way,” says Tom Ford, executive director of The Bay Foundation, which is leading the effort.

The project’s success has caused others to ponder its carbon sequestration potential, Ford says. The city of Santa Monica recently established a goal of reaching carbon neutrality by 2050, and asked The Bay Foundation how kelp restoration could factor into that. A nonprofit called Sustainable Surf has also launched a program enabling people to invest in the kelp restoration project to offset their own carbon footprints.

“These kelp forests grow so fast and suck in tremendous amounts of carbon,” Ford says. In California, there’s a focus on preserving wild lands with carbon credits, he explains. But the uptick in regional wildfires means that land-based forests might no longer seem like the safest bet. “Now, working off the coast is becoming perhaps a more important option.”

Similarly, in the United Kingdom, a plan known as “Help Our Kelp” aims to restore a 70-square-mile tract of historic kelp forest along the country’s southern Sussex Coast. It has attracted the interest of two local councils and a water company, which are intrigued by its potential to provide a new carbon sink. “All three organizations are interested in carbon, but also interested in the wider benefits [of kelp forests],” explains Sean Ashworth, deputy chief fisheries and conservation officer at the Association of Inshore Fisheries and Conservation Authorities, a partner on the project.

Captured Carbon?

Yet key questions remain about where all the stored carbon ends up. Trees stay in one place, so we can reasonably estimate how much carbon a forest stores. Kelp, on the other hand, can float off to unknown destinations. If it begins to decompose, its stored carbon may be released back into the atmosphere, explains Jordan Hollarsmith, a marine ecologist at Simon Fraser University and the Department of Fisheries and Oceans in Canada. “Truly removing that carbon from the global carbon budget would require that those kelp fronds somehow be buried, or transported to the deep sea,” she says.

In fact, emerging research is beginning to paint a picture of seaweed’s journey through the ocean. A 2016 study estimated that about 11% of global macroalgae is permanently sequestered in the ocean. The bulk of that, about 90%, is deposited in the deep sea, while the rest sinks into coastal marine sediments.

“If the algae reaches below the 1,000-meter horizon, it is locked away from exchange with the atmosphere over extended time scales, and can be considered permanently sequestered,” says Dorte Krause-Jensen, a professor of marine ecology at Aarhus University in Denmark and author on the 2016 study along with Duarte. Still, the challenge of tallying this up remains. Compared with mangroves, seagrasses, and salt marshes, which deposit carbon directly and reliably into the sediments below, the inherent changeability of a kelp forest makes the sequestration harder to accurately quantify. But this could change, Duarte say, if kelp forests came under strict human management—something that’s already happening with smaller species of seaweed that are being farmed worldwide for food products and fertilizer.

Future Kelp

Could we similarly bring vast kelp forests under human control for the benefit of the planet? Brian Von Herzen, executive director of the nonprofit The Climate Foundation, thinks so. The Climate Foundation is a partner on Cayne Layton’s project for climate-resilient kelp, and Von Herzen is a major player in the field of marine permaculture, a type of open-ocean seaweed farming that mimics wild kelp forests to regenerate marine ecosystems, boost food security and sequester carbon.

Von Herzen is now trying out prototype arrays in the Philippines to help make seaweed farming more resilient to climate change. Central to Von Herzen’s vision is an array on which kelp would grow, hovering about 80 feet below the ocean’s surface. Using solar, wind, and wave energy to drive their motion, hoses fixed beneath the structure would siphon up colder, nutrient-rich water from the depths below. This cool water infusion would re-create an ideal micro-environment for the tethered kelp to thrive; the kelp would then oxygenate the water and create new fish habitat—all while capturing carbon, Von Herzen explains.

While these deepwater kelp forests are only hypothetical, Von Herzen is now testing prototype arrays in the Philippines to help make seaweed farming more resilient to climate change. Seaweed farmers there have suffered major losses because of warm ocean currents that sweep in and decimate their crops. But with the upwelling of cooler water generated by the new arrays, seaweed is starting to flourish again.

This project, and others being developed off the coasts of Europe and the U.S., are laying the groundwork for Von Herzen’s ultimate ambition: To dramatically scale up kelp arrays, eventually spanning great tracts of deep ocean where they could collectively absorb billions of tons of CO2 while also providing food security in the form of shellfish aquaculture and fish habitat and providing what he calls “ecosystem life support.”

Kelp could be buried in the deep sea to sequester carbon or be harvested to produce low-emissions biofuel and fertilizers, he says. “We use the thriving wild kelp forest as the ecosystem model for what we can scale in the oceans,” Von Herzen says.

Current Benefits

On the back of her research, Krause-Jensen is optimistic about the carbon sequestration potential of kelp and the possibility that it could be dramatically enlarged by sustainable farming. But practically speaking, in nations such as Australia and the United States, Duarte says, “it’s harder to get a concession for a seaweed farm than for oil and gas exploration.” And global systems for providing compensation for sequestering carbon are not yet set up to accommodate kelp.

Christophe Jospe, the chief development officer at Nori, a company that is working to make it easier to fund carbon removal initiatives, argues that with such a powerful sequestration tool at our disposal, we should accelerate its acceptance—even if seaweed farmers are only able to guarantee sequestration for, say, 10 years.

“We are throwing ourselves into a heated environmental debate where people say, well, that’s not permanent. But nothing is permanent—and it’s the reservoir of carbon that we need to increase because of the climate crisis that we’re in,” he says. “So actually, it’s a huge environmental value for a program to ensure 10 years of permanence.”

Things might gradually be moving in that direction. Working with Oceans 2050, a global alliance to restore the world’s oceans led by Alexandra Cousteau, Duarte is now helping to develop a carbon credit program that could be applied to seaweed farming. This makes it possible to imagine a world where we might one day invest carbon credits in kelp farms or where wild forest restoration might count as mitigation.

Meanwhile, back in Tasmania, Layton continues to watch over his nurseries of infant kelp, and he urges us to be cognizant of what kelp forests are already doing for us right now.

“They’re exactly like forests on land. There aren’t many people questioning their value,” he says. “Some people might not be interested in seaweed. But they may be interested in fishing, or their beachfront property not getting washed away, or making sure that their coastal waters are clean. All of those things are intimately tied to kelp forests.”

Reposted with permission from Yes Magazine