Posts

Healthy Soils for a Healthy Life — Increasing Soil Organic Matter Through Organic Agriculture

This year has been declared the International Year of Soils by the 68th UN General Assembly with the theme “Healthy Soils for a Healthy Life.” I am particularly pleased with the theme because this is a message that we in the organic sector have been spreading for more than 70 years, and at first we were ridiculed. Now there is a huge body of science showing that what we observed in our farming systems is indeed correct.

“Organic farming” became the dominant name in English-speaking countries for farming systems that eschew toxic, synthetic pesticides and fertilizers through J.I. Rodale’s global magazine Organic Farming and Gardening, first published in the United States in the 1940s. Rodale promoted this term based on building soil health by the recycling of organic matter through composts, green manures, mulches and cover crops to increase the levels of soil organic matter (SOM) as one of the primary management techniques.

Photo credit: Pexels

Numerous scientific studies show that SOM provides many benefits for building soil health such as improving the number and biodiversity of beneficial microorganisms that provide nutrients for plants, including fixing nitrogen, as well as controlling soilborne plant diseases. The decomposition of plant and animal residues into SOM can provide all the nutrients needed by plants and negate the need for synthetic chemical fertilizers, especially nitrogen fertilizers that are responsible for numerous environmental problems.

SOM improves soil structure so that it is more resistant to erosion and is easier to till, resulting in lower energy use and less greenhouse gas output. Soils with good SOM levels are more efficient at absorbing rainwater and storing it for plants to use in dry periods. Studies show that organic systems get around 30 percent higher yields in periods of drought than conventional systems due to the increase of SOM and its ability to capture and store water for crops.

SOM is composed largely of carbon that is captured as CO2 from the air by plants through photosynthesis. Published, peer-reviewed meta-studies show that organic farming systems are superior to conventional systems in capturing CO2 from the atmosphere (the primary greenhouse gas responsible for climate change) and sequestering it into the ground as SOM.

SOM & CLIMATE CHANGE

Worldwide, agriculture is responsible for between 11 and 30 percent of greenhouse gas emissions, depending on the boundaries and methodologies used to determine its emissions. According to the United Nations Environment Programme, the estimates of global greenhouse gas emissions in 2010 were 50.1 gigatons of carbon dioxide equivalent (Gt CO2e) per year. To keep global mean temperature increases below 2°C compared to preindustrial levels, GHG emissions will have to be reduced to a median level of 44 Gt CO2e in 2020.

This means that the world will have to reduce the current level of emissions by 6.1 Gt CO2e by 2020 and reduce it every subsequent year. According to the latest World Meteorological Organization figures, the levels of GHG pollution in the atmosphere and the oceans are the highest in history and are still increasing.

Keeping the rise in temperature below 2°C will not only involve reducing emissions through energy efficiency, renewable energy and cleaner energy sources; sequestering GHGs already present in the atmosphere will also be necessary to reduce the current levels. Currently most sequestration is based on growing biomass as carbon sinks and capturing it as wood-based products.

Soils are the greatest carbon sink after the oceans. According to Professor Rattan Lal of Ohio State University, there are over 2,700 Gt of carbon stored in soils worldwide. This is considerably more than the combined total of 780 Gt in the atmosphere and the 575 Gt in biomass.

The amount of CO2 in the oceans is already causing problems, particularly for species with calcium exoskeletons such as coral. Scientists are concerned that the increase in acidity caused by higher levels of CO2 is damaging these species and threatens the future of marine ecosystems such as the Great Barrier Reef.

MITIGATION THROUGH ABOVEGROUND BIOMASS

Currently the major push for carbon sequestration is through above-ground biomass, despite that fact that its potential as a carbon sink is significantly less than that of soil. The other issue is the need to take land out of food production to grow trees. There is some potential with agroforestry and trees as shade cover for some cash crops like coffee and cacao, however this will deliver considerably less than research has shown can be sequestered into soils with good agricultural practices.

SEQUESTRATION THROUGH AGRICULTURE

The ability of soils to absorb enough CO2 in order to stabilize current atmospheric CO2levels is a critical issue, and there is a major debate over whether this can be achieved through farming practices. Reviews of conventional farming systems have found that most are losing soil carbon and at best they can only slow the rate of loss. On the other hand, farming systems that recycle organic matter and use crop rotations can increase the levels of soil organic carbon (SOC).

A preliminary study by the Research Institute of Organic Agriculture, Switzerland, published by FAO, collated 45 comparison trials between organic and conventional systems that included 280 data sets. These studies included data from grasslands, arable crops and permanent crops in several continents. A simple analysis of the data shows that on average the organic systems had higher levels of soil carbon sequestration.

Dr. Andreas Gattinger and colleagues wrote, “In soils under organic management, the SOC stocks averaged 37.4 tons C ha-1, in comparison to 26.7 tons C ha-1 under non-organic management.”

This means that the average difference between the two management systems (organic and conventional) was 10.7 tons of C. Using the accepted formula that SOC x 3.67 = CO2, this means an average of more than 39.269 tons of CO2 was sequestered in the organic system than in the conventional system.

The average duration of management of all included studies was 16.7 years. This means that an average of 2,351 kg of CO2 was sequestered per hectare every year in the organic systems compared to the conventional systems.

In a later peer-reviewed meta-analysis, published in PNAS, that used 41 comparison trials and removed the outliers in the data sets in order not to overestimate the data and to obtain a conservative estimate, researchers reported that organic systems sequestered 550 kg C per hectare per year. This equates to 2018.5 kg CO2 per hectare per year.

Based on these figures, the widespread adoption of current organic practices has the potential to sequester around 10 Gt of CO2, which is the range of the emissions gap in 2020 of 8-12 Gt CO2e per year.

Amount of Organic Nitrogen Held in the Soil

1% SOC      2,400 kg of organic N per hectare      1.72% SOM

2% SOC      4,800 kg of organic N per hectare      3.44% SOM

3% SOC      7,200 kg of organic N per hectare      5.16% SOM

4% SOC      9,600 kg of organic N per hectare      6.88% SOM

5% SOC      12,000 kg of organic N per hectare    8.50% SOM

The potential exists for higher levels of CO2 sequestration. All data sets that use averaging have outlying data. These are examples that are significantly higher or significantly lower than the average.

There are several examples of higher levels of carbon sequestration than the averages quoted in the studies above. The Rodale Institute in Pennsylvania has been conducting long-running comparisons of organic and conventional cropping systems for more than 30 years that confirm organic methods are effective at removing CO2 from the atmosphere and fixing it as organic matter in the soil. Tim LaSalle and Paul Hepperly wrote, “In the FST (Rodale Institute farm systems trial) organic plots, carbon was sequestered into the soil at the rate of 875 lbs/ac/year in a crop rotation utilizing raw manure, and at a rate of about 500 lbs/ac/year in a rotation using legume cover crops.

During the 1990s, results from the Compost Utilization Trial (CUT) at Rodale Institute — a 10-year study comparing the use of composts, manures and synthetic chemical fertilizer — show that the use of composted manure with crop rotations in organic systems can result in carbon sequestration of up to 2,000 lbs/ac/year. By contrast, fields under standard tillage relying on chemical fertilizers lost almost 300 pounds of carbon per acre per year.”

Converting these figures into kilograms of CO2 sequestered per hectare using the accepted conversion rate of 1 pound per acre = 1.12085116 kg/ ha and SOC x 3.67= CO2, gives the following results: The FST legume-based organic plots showed that carbon was sequestered into the soil at the rate of about 500 lbs/ac/year. This is equivalent to a sequestration rate of 2,055.2kg of CO2/ha/yr, which is close to the average found in the Gattinger meta-study.

However, other organic systems produced much higher rates of sequestration. The FST manured organic plots showed that carbon was sequestered into the soil at the rate of 875 lbs/ac/year. This is equivalent to a sequestration rate of 3,596.6 kg of CO2/ha/year and if extrapolated globally would sequester 17.5 Gt of CO2.

The CUT showed that carbon was sequestered into the soil at the rate of 2,000 lbs/ac/year. This is equivalent to a sequestration rate of 8,220.8 kg of CO2/ha/year and if extrapolated globally, would sequester 40 Gt of CO2.

A meta-analysis by Eduardo Aguilera et al. published in the peer-reviewed journal, Agriculture, Ecosystems and Environment, of 24 comparison trials in Mediterranean climates between organic systems and non-organic systems without organic supplements found that the organic systems sequestered 970 kg of C/ha/year more than the non-organic systems. This equates to 3559.9 kg of CO2/ha/year. The data came from comparison trials from Mediterranean climates in Europe, the United States and Australia, and if extrapolated globally, would sequester 17.4 Gt of CO2.

The Louis Bolk Institute conducted a study to calculate soil carbon sequestration at SEKEM, the oldest organic farm in Egypt. Their results show that on average SEKEM’s management practices resulted in 900 kg of carbon being stored in the soil per hectare per year in the fields that were 30 years old. Using the accepted formula of SOC x 3.67 = CO2, this means that SEKEM has sequestered 3,303 kg of CO2 per hectare per year for 30 years.

Based on these figures, the adoption of SEKEM’s practices globally has the potential to sequester 16 Gt of CO2, which is around 30 percent of the world’s current GHG emission into soils.

It is not the intention of this paper to use the above types of generic exercises of globally extrapolating data as scientific proof of what can be achieved by scaling up organic systems. These types of very simple analyses are useful for providing a conceptual idea of the considerable potential of organic farming to reduce GHG emissions on a landscape scale. The critical issue here is that urgent peer-reviewed research is needed to understand how and why — and for the skeptics, if — these systems sequester significant levels of CO2 and then look at how to apply the findings for scaling up on a global level in order to achieve GHG mitigation.

GREATER RESILIENCE IN ADVERSE CONDITIONS

According to research by the UNFCCC IPCC Fourth Assessment Report (IPCC 2007) and others, the world is seeing increases in the frequency of extreme weather events such as droughts and heavy rainfall. Even if the world stopped polluting the planet with greenhouse gases tomorrow, it would take many decades to reverse climate change. This means that farmers have to adapt to the increasing intensity and frequency of adverse and extreme weather events.

Published studies show that organic farming systems are more resilient to predicted weather extremes and can produce higher yields than conventional farming systems in such conditions. For instance, the Wisconsin Integrated Cropping Systems Trials found that organic yields were higher in drought years and the same as conventional in normal weather years.

IMPROVED EFFICIENCY OF WATER USE

Research shows that organic systems use water more efficiently due to better soil structure and higher levels of humus and other organic matter compounds. D.W. Lotter and colleagues collected data over 10 years during the Rodale Farm Systems Trial. Their research showed that the organic manure system and organic legume system (LEG) treatments improve the soils’ water-holding capacity, infiltration rate and water capture efficiency. The LEG maize soils averaged 13 percent higher water content than conventional system (CNV) soils at the same crop stage and 7 percent higher than CNV soils in soybean plots. The more porous structure of organically treated soil allows rainwater to quickly penetrate the soil, resulting in less water loss from runoff and higher levels of water capture. This was particularly evident during the two days of torrential downpours from hurricane Floyd in September 1999, when the organic systems captured around double the water as the conventional systems.

Long-term scientific trials conducted by the Research Institute of Organic Agriculture in Switzerland comparing organic, biodynamic and conventional systems had similar results showing that organic systems were more resistant to erosion and better at capturing water.

“We compare the long-term effects (since 1948) of organic and conventional farming on selected properties of the same soil. The organically farmed soil had significantly higher organic matter content, thicker topsoil depth, higher polysaccharide content, lower modulus of rupture and less soil erosion than the conventionally farmed soil. This study indicates that, in the long term, the organic farming system was more effective than the conventional farming system in reducing soil erosion and, therefore, in maintaining soil productivity (Reganold et al. 1987).”

Humus, a key component of SOM, allows for the ability of organic soils to be more stable and to hold more water. This is due to its ability to hold up to 30 times its own weight in water, and being a ‘sticky’ polymer, glues the soil particles together, giving greater resistance to water and wind erosion.

There is a strong relationship between SOM levels and the amount of water that can be stored in the root zone. The table below should be taken as a rule of thumb, rather than as a precise set of measurements. Different soil types will hold different volumes of water when they have the same levels of organic matter due to pore spaces, specific soil density and a range of other variables. Sandy soils generally hold less water than clay soils.

The table above gives an understanding of the potential amount of water that can be captured from rain and stored at the root zone in relation to the percentage of SOM.

There is a large difference in the amount of rainfall that can be captured and stored between the current SOM level in most traditional farms in Asia and Africa and a good organic farm with reasonable SOM levels. This is one of the reasons why organic farms do better in times of low rainfall and drought.

The Rodale Farming Systems Trial showed that the organic systems produced more corn than the conventional system in drought years. The average corn yields during the drought years were 28 to 34 percent higher in the two organic systems. The yields were 6,938 and 7,235 kg per ha in the organic animal and organic legume systems, respectively, compared with 5,333 kg per ha in the conventional system. The researchers attributed the higher yields in the dry years to the ability of the soils on organic farms to better absorb rainfall. This is due to the higher levels of organic carbon in those soils, which makes them more friable and better able to capture and store rainwater which can then be used for crops.

This is very significant information as the majority of the world’s farming systems are rain-fed. The world does not have the resources to irrigate all of the agricultural lands, nor should such a project be undertaken. Improving the efficiency of rain-fed agricultural systems through organic practices is the most efficient, cost-effective, environmentally sustainable and practical solution to ensure reliable food production in the face of increasing weather extremes.

SYNTHETIC NITROGEN FERTILIZERS

One of the main reasons for the differences in soil carbon between organic and conventional systems is that synthetic nitrogen fertilizers degrade soil carbon. Research shows a direct link between the application of synthetic nitrogenous fertilizers and decline in soil carbon.

Volume of Water Retained/ha (to 30 cm) in Relation to Soil Organic Matter (SOM)

0.5% SOM = 80,000 liters

1% SOM = 160,000 liters (common farm level in much of Africa, Asia and parts of Latin America)

2% SOM = 320,000 liters

3% SOM = 480,000 liters

4% SOM = 640,000 liters

5% SOM = 800,000 liters (pre-settlement/farming levels in many countries)

6% SOM = 960,000 liters

This table gives an understanding of the potential amount of water that can be captured from rain and stored at the root zone in relation to the percentage of SOM.

Scientists from the University of Illinois analyzed the results of a 50-year agricultural trial and found that synthetic nitrogen fertilizer resulted in all the carbon residues from the crop disappearing as well as an average loss of around 10,000 kg of carbon per hectare per year. This is around 36,700 kg of CO2 per hectare on top of the many thousands of kilograms of crop residue that is converted into CO2 every year.

Researchers found that the higher the application of synthetic nitrogen fertilizer the greater the amount of soil carbon lost as CO2. This is one of the major reasons why most conventional agricultural systems have a decline in soil carbon while most organic systems increase soil carbon.

PLANT-AVAILABLE NITROGEN LEVELS

One of the main concerns about organic agriculture is how to get sufficient plant-available nitrogen without using synthetic nitrogen fertilizers such as urea.

SOM, particularly the humus fractions, tend to have a carbon nitrogen ratio of 9:1 to 11:1. As the carbon levels increase, the amount of soil nitrogen increases in order to maintain the carbon-nitrogen ratios. Adding organic matter into the soil to increase carbon, results in the nitrogen levels increasing.

Much of this soil nitrogen is fixed by free-living soil microorganisms such as azobacters and cyanobacterias. The use of DNA sequencing is revealing that cohorts of numerous thousands of species of free-living microorganisms are involved in fixing nitrogen from the air into plant available forms. There are many studies that show that there is a strong relationship between higher levels of SOM and higher levels of soil biological activity.

This biological activity includes free-living nitrogen-fixers, and they turn the atmospheric nitrogen, the gas that makes up 78 percent of the air, into the forms that are needed by plants. They do this at no cost and are a major source of plant-available nitrogen that is continuously overlooked in most agronomy texts.

New research has found a new group of nitrogen-fixing organisms called endophytic microorganisms. These microbes can colonize the roots of numerous plant species including rice, grain crops and sugar cane.

SOIL CARBON, NITROGEN RATIOS

It is important to get an understanding of the potential for how much nitrogen can be stored in SOM for the crop to use. SOM contains nitrogen expressed in a Carbon to Nitrogen Ratio. This is usually in ratios from 11:1 to 9:1; however, there can be further variations. The only way to firmly establish the ratio for any soil is to do a soil test and measure the amounts.

For the sake of explaining the amount of organic nitrogen in the soil we will use a ratio of 10:1 to make the calculations easier.

The amount of carbon in SOM is expressed as SOC and is usually measured as the number of grams Formulated of carbon per kilogram of soil. Most texts will express this as a percentage of the soil to a certain depth. There is an accepted approximation ratio for the amount of soil organic carbon in soil organic matter: SOC × 1.72 = SOM.

The issue of working out the amount of SOC as a percentage of the soil by weight is complex as the specific density of the soil has to be factored in because some types of soils are denser and therefore heavier than other soils. This will change the weight of carbon as a percentage of the soil.

To make these concepts readily understandable we will use an average estimation developed by Dr. Christine Jones, one of Australia’s leading soil scientists and soil carbon specialists. According to Dr. Jones: “… a 1 percent increase in organic carbon in the top 20 cm of soil represents a 24 t/ha (24,000 kg) increase in SOC …”

This means that a soil with 1 percent SOC would contain 24,000 kg of carbon per hectare. With a 10:1 carbon to nitrogen ratio this soil would contain 2,400 kg of organic nitrogen per hectare in the top 20 centimeters, the primary root zone.

The conventional dogma around nitrogen is that it can only be used by plants if it is in the form of nitrate or ammonium and that organic nitrogen is mostly not available to the crop until it has been converted into these two forms of N.

There are hundreds of peer-reviewed scientific studies that show that this assumption is incorrect and that in natural systems plants take up nitrogen in numerous organic forms such as amino acids, amino acid precursors and DNA.

The fact is that the significant proportion of the organic nitrogen in the soil is readily available to the crop. The key to get an adequate level of N is to increase SOM levels rather than adding synthetic nitrogen fertilizers.

Given that synthetic nitrogen destroys organic matter, the use of these fertilizers should be avoided as they lock farmers into a perpetual dependence on these costly inputs once the organic matter levels have been run down and most of the organic nitrogen forms in the soil have been depleted. Farmers should be encouraged to obtain all their nitrogen from organic sources such as composts, manures, green manures and legumes and build up their organic matter levels.

André Leu is international director of Regeneration International. He is a longtime farmer in Australia and past president of the International Federation of Organic Agricultural Movements. He is the author of The Myths of Safe Pesticides and Poisoning Our Children, published by Acres U.S.A.

Reposted with permission from Eco-Farming Daily

 

Coalition Grows at Regeneration Midwest Gathering

On June 28 and June 29, about 50 people representing Midwest farm and farming-related businesses, nonprofits, investors and economic development officials gathered in Northfield, Minnesota, to identify next steps toward formalizing the goals and launch of Regeneration Midwest (RM). RM is a 12-state regional coalition organized to serve as the foundation for transitioning five core sectors of the food and agriculture system from the current industrial model to a regenerative model.

RM came to life in late 2017, and has since been evolving as a platform for scaling up models that address the three pillars of regenerative agriculture: social, ecological and economic regeneration. The coalition originated from the poultry-centered regenerative agriculture design pioneered by the Northfield-based nonprofit, Main Street Project. Similar to other organizations throughout the country, Main Street has built a successful, workable and replicable model for re-designing the way poultry is raised. The system delivers a diversity of food products that can be produced and branded under a regenerative standard, with poultry at the center.

While highly successful as a stand-alone project, Main Street faces the same challenges as other organizations building similar models in other sectors: In order to focus on their core competencies and unleash their full potential on a regional scale, these projects need large-scale regional infrastructure support throughout the entire supply chain, which includes farmers, aggregators, marketers, distributors and processors.

RM will facilitate building and scaling up this regional infrastructure by focusing on five core strategically connected sectors of the food and agriculture industry. In this way, the coalition aims to address the common needs and challenges of individual organizations, so together they can scale faster and more efficiently.

Strategic Regenerative Opportunities

• Poultry: Starting with Main Street Project’s design, RM will facilitate the infrastructure needed for replication of this model throughout the Midwest.

• Grains: In partnership with the Midwest Grains Initiative and the Non-GMO Project, and in coordination with a large network of local operations, RM will aggregate existing standards that support agroforestry systems as a foundational blueprint for transitioning small-grain production for both human consumption and animal feed. The intention is to build supply chains to ensure a robust coordination and continuity of regenerative standards and the integration and stacking of related enterprise sectors to build larger-scale trading platforms.

• Pork, Beef: RM will join existing pastured-pork and grass-fed beef producers to coordinate and identify strategies aimed at improving production methods aligned with standards that support the regeneration of land, local economies and natural habitats for livestock species, in order to bring more valuable products to the marketplace.

• Strategically Selected Vegetables, Fruits: Vegetables represent a challenging sector for regenerative standards development, and application. Vegetable production requires intense use of outside inputs, especially if the farm doesn’t incorporate livestock for manure that can be transformed into fertilizer. Cover cropping, crop rotation, incorporation of perennial crops, alley-cropping vegetables and practices of this kind can help a farm regenerate its soil organic matter. RM will work to bring together regenerative standards that support regional scalable opportunities where separate livestock production and selected fruits and vegetable production can become more competitive as a result of their interdependence, and farmers can become their own region’s suppliers of natural inputs, thus regenerating larger landscapes.

Support Systems, Infrastructure

RM will focus first on mapping promising agriculture production models in the sectors outlined above. The core criteria for selection will be based on 1) a family of standards endorsed by the coalition; 2) the feasibility and impact of these models if they were to be scaled across the region; and 3) whether they were designed for the common good, meaning that they are ready to be made available to all farmers and institutions for adoption and deployment.

After these pieces are in place, RM will focus on missing systems infrastructure pieces that are critical to the combined deployment of promising models. So far, the following key areas of system-level programming have been identified as:

• Trade Infrastructure: A platform for large-scale trading of products will be central to the success of the 12-state coalition. RM’s role will consist of ensuring that the value-chain components are in place or that they are built by capable organizations, engaging these organizations and coordinating the process of building and scaling up a consolidated infrastructure so that participants in the 12-state region can access markets at all levels and use the trading platform to move more products from farms to tables. RM will not engage in direct marketing, sales, or handling of products. Blockchain technology, trading boards and standardization of productions and transactions for volume trading, are examples of strategic infrastructure options under development.

• Financing: Financing farms belongs at the local level, with local actors and local infrastructure. RM will help identify and support those organizations directly working at this level. Working with Iroquois Valley Farms (Evanston, Illinois) and Shared Capital Cooperative (St. Paul, Minnesota), RM will bring these financing tools to every organization in the 12-state region and facilitate their engagement. RM will also work to attract investors from around the country.

• Markets: In partnership with existing organizations, RM will support the creation of marketing campaigns to differentiate regenerative products in the marketplace through targeted regional and state campaigns.

• Education: In partnership with existing organizations, RM will support targeted regional and state campaigns aimed at educating industry leaders, investors, consumers and government officials at all levels.

• Supply Chain, Tracking Progress: The supply chain and flow of products from farms to markets is the foundation to successfully transitioning agriculture. Tracking the progress across the supply chain and ensuring that it improves continuously, that it is verified to meet regenerative standards and that there is integrity in the processes, is central to the operational goals of the RM coalition. RM will track progress on key indicators such as number of products available, number of farms engaged, acreage impacted and farmers’ overall financial performance. These indicators will ensure that we can monitor, measure, and continuously improve a successful transition to regenerative agricultural practices.

Building Executive Teams

Thanks to the strong support from Main Street Project, Regeneration International and Organic Consumers Association, RM has an organizing team and three core executives working daily to plan and execute the start-up phase of this initiative.

Based on regional conversations that took place during the 2018 MOSES Conference in La Crosse, Wisconsin, and local conversations in Minnesota, Nebraska, Iowa, Wisconsin, Kansas, Indiana and other states, we have produced a base directory of players across the 12-state region. Even though three people currently oversee the larger effort, members from each state are expected to join only if they are ready to work in cooperation, willing and partially resourced to carry on the process of building state-level coalitions and to work in alignment with the larger regional vision.

Farmers who want to join the system or nonprofits willing to engage in state-level organizing within the Midwest states can reach out to the organizers of Regeneration Midwest by emailing regenerationmidwest@gmail.com.

Reginaldo Haslett-Marroquin is chief strategy officer at Main Street Project, founding member of Regeneration International and director of Regeneration Midwest.

Reposted with permission from MOSES.

Global Sequestration Potential of Increased Organic Carbon in Cropland Soils

Authors: Deborah A. Bossio, Rolf Sommer, Louis V. Verchot & Robert J. Zomer, Published: November 14, 2017 

Historical and ongoing increase of agricultural production worldwide has profoundly impacted global carbon, water and nutrient cycles1,2,3,4. Both land-use change to agriculture and agricultural production have and continue to contribute significantly to the increase in atmospheric carbon dioxide (CO2), accounting for as much as 24% of global greenhouse gas (GHG) emissions5. Almost 50% of all potentially vegetated land surface globally has been converted to croplands, pastures and rangelands1,2,3,4. This land-use change and soil cultivation have contributed 136 ± 55 petagrams of carbon (Pg C) to the atmosphere from change in biomass carbon since the beginning of the Industrial Revolution, with depletion of soil organic carbon (SOC) accounting for a further contribution of 78 ± 12 Pg C. This estimated 214 ± 67 Pg C from the land-use sector compares to the estimated 270 ± 30 Pg of C contributed by fossil fuel combustion6 as a historical carbon source. More recently soil organic matter also has gotten increasing attention as a potentially large and uncertain source of carbon to the atmosphere in the future in response to predicted global temperature rises7,8.

Soils, however, can act as both sources and sinks of carbon, depending upon management, biomass input levels, micro-climatic conditions, and bioclimatic change. Substantially more carbon is stored in the world’s soils than is present in the atmosphere. The global soil carbon (C) pool to one-meter depth, estimated at 2500 Pg C, of which about 1500 Pg C is soil organic carbon (SOC), is about 3.2 times the size of the atmospheric pool and 4 times that of the biotic pool6,9,10. An extensive body of research has shown that land management practices can increase soil carbon stocks on agricultural lands with practices including addition of organic manures, cover cropping, mulching, conservation tillage, fertility management, agroforestry, and rotational grazing11,12. There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential13. On this basis, the 4p1000 initiative on Soil for Food Security and Climate14, officially launched by the French Ministry of Agriculture at the United Nations Framework Convention for Climate Change: Conference of the Parties (UNFCCC COP 21) in Paris, aims to sequester approximately 3.5Gt C annually in soils. Croplands will be extremely important in this effort, as these lands are already being actively managed, and so amenable to implementation of improved practices12. Furthermore, because almost all cropped soils have lost a large percentage of their pre-cultivation SOC6,15, they potentially represent a large sink to re-absorb carbon through the introduction and adoption of improved or proper management aimed towards increased SOC. However, carbon is rarely stored in soils in its elemental form, but rather in the form of organic matter which contains significant amounts of other nutrients, above all nitrogen. Nutrients, biomass productivity, the type of vegetation and water availability, among other constraints therefore can be major limiting factors inhibiting increases in soil carbon sequestration16. Further imperative to sequester carbon in soils arises from the multiple co-benefits that are obtained from sequestration of carbon in soils that have been depleted of their organic matter17. Soil fertility, health, and functioning are immediate consequences of the amount of soil organic matter (and hence carbon) a soil contains; this is even more important for highly weathered soils, as is the case for the majority of soils in the humid lowland tropics. Increasing carbon in soils also means improving its physical properties and related ecosystems services, such as better water infiltration, water holding capacity, as well as potentially increasing agricultural productivity and ecological resilience11,12.

In this analysis, we illustrate where carbon might be sequestered, and how much, if, through improved practices and management, we could increase SOC on agricultural land by a generally accepted (as attainable) moderate to optimistic amount, based on the medium and high sequestration scenarios of Sommer and Bossio (2014). These scenarios from Sommer and Bossio (2014) resulted in an 0.27 and 0.54% increase in SOC in the top 30 cm of soils after 20 years, for the medium and high scenarios, respectively, that is, a 0.012 to 0.027% annual increase. The low scenario in Sommer and Bossio (2014) was not used because it refers to sequestration rates estimated primarily for unimproved pasture land. An implicit basic assumption is that in general, 50 to 70% of soil carbon stocks have been lost in cultivated soils6,15,17, such that the SOC status of almost all cultivated soils can be increased. It is expected that these cropped soils will be able to sequester carbon for at least 20 years before reaching saturation points and new SOC equilibriums13,18, while meta-analysis of field studies14 suggests that in some instances significant sequestration can continue for 30 or even up to 40 years before reaching new equilibriums. We used the recently released ISRIC SoilGrids250m19 global database of soil information, to identify and derive basic soil characteristics, i.e. SOC and soil bulk density, and the FAO GLC-Share Land Cover database20 to identify and calculate areal extent of the cropland landcover class. The analysis gives a spatially articulated estimate of the distribution and increase of SOC if equal sequestration is reached, within the medium and high scenarios, on all available cropland soils through improved practices. The results of this paper provide an estimate of what the potential amount of sequestered carbon would be in terms of tons of carbon per hectare, spatially articulated at 250 m resolution, and in terms of Pg C regionally and globally, allowing for a quantified discussion of the importance of this carbon pool within on-going global discussions regarding mitigation potential within the agricultural sector.

Results

Global Soil Organic Carbon Stocks on Croplands

Estimates of global soil carbon stocks, trends and sequestration potential11,16, particularly within the context of a warming climate7,8,21,22, are now central to important discussions ongoing within various international fora, notably the discussions on including agricultural land within mitigation strategies and protocols at the UNFCCC, and are the basis for the 4p1000 Initiative14. The spatial distribution of SOC on croplands (Fig. 1), and its contribution to total carbon stock, varies with latitude, and differs substantially from that of carbon stored in above and below ground biomass23,24. Most of the world’s SOC is stored at northern latitudes, particularly in the permafrost and moist boreal regions. In contrast, large areas of cropland in India, across the Sahel, northern China, and Australia are found on low carbon density soils. An overview of 27 studies25 reports that 1500 Pg C can be regarded as a rough estimate of the global SOC pool (to one meter depth; across all the world’s soils, more than 130 million km2), however with substantial variability among both spatially- and non-spatially-explicit estimates and a range of from 500 to 3000 Pg C.

About 372,000 km2 of cropland (Supplementary Figure S1), comprised of carbon dense soils (> 400 t C/ha and/or with a bulk density <1.0 g/cm3) and which are considered likely to lose SOC under any form of cropping management, and sandy soils unlikely to sequester carbon due to high sand content (> 85%), were excluded from the analysis as “unavailable” (Table 1). In particular, it is highlighted that high SOC soils, while accounting for only 2% of total cropland area, account for almost 6% (8.48 Pg C) of total global cropland SOC stocks, and require a set of management options aimed toward conservation and maintenance of carbon stocks25. These areas are primarily peatlands in South East Asia, Russia, some in North America, South America, Europe, Australia/Pacific, and Andosols in South America. Cultivation of peat soils has been shown to contribute significantly to global emissions from agriculture26. Tropical and temperate peatlands account for a disproportionate share of terrestrial carbon stocks considering their more limited area globally27, with peatland drainage, concentrated in Europe and Indonesia, reported to account for nearly a third of all cropland emissions28.

Table 1: Soil organic carbon (SOC) for all available cropland soils globally (i.e. those not excluded from the analysis as high SOC or sandy soils), showing both the global totals and the global averages per hectare, at current status (T0), and after 20 years for both the medium and high sequestration scenarios, and their annual increment.

Globally, cropland stores more than 140 Pg C in the top 30 cm of soil, almost 10% of the total global SOC pool. About 94% of this carbon (131.81 Pg C) is stored on the 15.9 million km2 (98% of global cropland) identified as potentially available for enhanced carbon sequestration through improved soil management and farming practices11. Global distribution of SOC is strongly influenced by temperature and precipitation15,29. SOC is generally lower in the tropics where it is hotter and/or drier, and higher in the cooler, wetter, more northerly, and to a somewhat lesser extent, southerly, latitudes (Fig. 1). Lal (2002) cites several studies showing an exponential decrease in SOC with increase in temperature. This is reflected by low SOC values found across much of the equatorial belt (e.g. less than 100 t C/ha), with the highest carbon density soils (400 t C/ha or more) found in the northern croplands and farmed peat soils of the United States, Canada, Europe and Russia (see Supplementary Table S1).

The regions of North America, Eurasia (Russia) and Europe currently store the greatest amount of carbon on cropland, each with more than 21 Pg C, and all together accounting for over 50% of all SOC stocks on cropland globally (Table 1). By contrast, Central America, North Africa, and the Australian/Pacific region have very low amounts of stored SOC, together comprising 6.48 Pg C or just over 4.6% of the global total. Western Asia, South Asia, Southeast East Asia and East Asia each have moderate amount ranging from 4.38 Pg C to 9.14 Pg C, but together accounting for just less than 2% of global total. South America, even having a fairly large amount of farmland, has a moderate 9.42 Pg C. Almost 12 Pg C, more than 8.5% of the global total, is found in Africa, with the highest concentrations found in the Eastern and Central regions. Nationally, Russia with its vast northern tracts of carbon dense agricultural land has the largest total amount of SOC stored on cropland more than 21.9 Pg C (almost 17% of the global total), followed by the United States (18.9 Pg C), China (8.4 Pg C), India (6.4 Pg C), and Brazil (5.0 Pg C) (Supplementary Table S2).

KEEP READING ON NATURE 

New Study: Up to 7 Billion Tonnes of Carbon Dioxide Can Be Removed From the Atmosphere Each Year Through Better Soil Management on Farmland

Author: Georgina Smith | Published: November 14, 2017 

By better managing farmland soil, the amount of carbon stored in the top 30 centimeters of the soil could increase an extra 0.9 to 1.85 gigatons each year, say authors of a new study published today in Scientific Reports.

This is equivalent to carbon globally emitted by the transport sector (1.87 gigatons of Carbon); and equivalent to 3 – 7 billion tonnes of CO2 which could be removed from the atmosphere. For comparison, the US emits 5 billion tonnes of CO2 equivalent each year (Edgar database, 2015).

The maps in the new study show how much carbon could be stored per hectare each year, which will be vital for designing global mitigation strategies, for achieving targets set out in the Paris Climate Agreement.

Since the industrial revolution, 50-70 percent of carbon stored in the soil has been lost to the atmosphere, contributing to harmful greenhouse gas emissions in the form of carbon dioxide. Since farmland is already intensively managed, improving the way it is managed is a practical step to reduce carbon in the atmosphere, say authors.

Dr. Robert Zomer, from the Kunming Institute of Botany, Chinese Academy of Sciences and lead-author of the study, said: “Our finding show that turning soils into carbon sinks can sequester significant amounts of carbon in cropland soils. Our research shows soils can be part of the solution to combat climate change – and by doing so we can improve soil health.

The findings illustrate that most of the world’s carbon is stored in cooler, wetter, parts of the world in the northern hemisphere; and less in the tropics where it is hotter or drier. North America, Russia and Europe currently store for over half of the world’s carbon in croplands.

The United States showed the highest total annual potential to store carbon in the soil, followed by India, China, Russian and Australia, if management is improved. The improved practices, among others, include, using compost or (green) manure, mulching, zero tillage, cover cropping, and other regenerative and natural climate solutions, such as agroforestry.

KEEP READING ON CIAT

The Seeds of Vandana Shiva

Meet Precious Phiri who spends her days teaching farmers in Zimbabwe how to mitigate climate change.
Specifically, she instructs them in holistic land management, a method that rejuvenates depleted water and degraded soil while drawing climate-changing C02 out of the atmosphere.
Originally trained by the Savory Institute, the enthusiastic Ms. Phiri explains that a cornerstone of holistic management is that eco-systems without animals create ecological imbalance. Grasslands, for example, deteriorate when the food chain that keeps them alive is disturbed. Deprived of a symbiotic relationship with ruminants, grass dies and then soil dies. And, in the process, climate-disrupting carbon discharges into the atmosphere.
It’s simple but not obvious: Ecosystems need both fauna and flora to thrive. Think of the oceans without whales or Yellowstone National Park without wolves. It’s the great web of life.
The phenomenon, sometimes described as a “trophic cascade,” is a biological process that flows between every part of the food chain.
Here Precious explains it:
Here’s another obvious but often-overlooked fact: Healthy humans come from healthy food that originates in healthy soil. And there is no way to support this synergy between our health and the biosphere in an industrial food system: Big Ag and Big Food disrupts precious water cycles, destroys biodiversity, pummels the biosphere with toxic pesticides, and imprisons innocent animals that should be on the land. This isn’t mere sentiment; it’s actually climate science.
In a regenerative world, it’s OK to eat meat, but if you’re going to do so, it’s imperative to transition to organic, grass-fed and free-range–and not in the quantities Big Ag and Big Food would have you do. Any other way and we are contributing to global warming, impacting our health and, by the way, engaging significantly in animal cruelty. Of course it’s more than OK to be vegan or vegetarian but, ecologically speaking, there is also an argument for conscious meat eating.
Vandana Shiva is vegetarian and also a founding member of Regeneration International, an organization that promotes and researches this stuff. Here’s a clip of her talking about the animals at her Navdanya farm.
And here are some books to read if you’d like to know more:
It’s a whole new world of hope for the environment, the climate and our own health. Perhaps the most hopeful story ever that too few people have heard.
P.S: About progress on our film about Dr. Shiva’s life story: We’ve just completed laying in additional dialogue, now we’re working on music and B-Roll. Onwards we go!
Please contribute to this next phase of our film about Dr. Shiva’s life story here: Every bit helps to get the film completed (and into your hands) sooner rather than later!

‘Four for 1000’: A Global Initiative to Reverse Global Warming Through Regenerative Agriculture and Land Use

“Four for 1000”: Burning Questions

Question One: What is the “Four for 1000: Soils for Food Security and Climate” Initiative launched by the French government at the Paris Climate Summit in December 2015?

Answer: “Four for 1000: Soils for Food Security and Climate” is a global plan and agreement to reverse global warming, soil degradation, deteriorating public health and rural poverty by scaling up regenerative food, farming and land use practices.

Under this Initiative, over the next 25 years, regenerative agriculture and large-scale ecosystem restoration can qualitatively preserve and improve soils, pastures, forests and wetlands while simultaneously drawing down (through enhanced plant photosynthesis) billions of tons of excess carbon from the atmosphere, turning it into biomass and sequestering it in our soils.

In simplest terms, 4/1000 calls for the global community to draw down as much CO2 from the atmosphere as we’re currently emitting, and at the same time stop emitting other greenhouse gases.

Question Two: How many countries and regions of the world have signed on to the 4/1000 Initiative?

Answer: Approximately 40 countries and regions of the world have already signed on to the 4/1000 Initiative. Hundreds of grassroots civil society organizations also have signed on.

Proponents of 4/1000 expect most nations, regions and cities will sign on to the Initiative before the end of this decade, to meet their INDC (Intended Nationally Determined Commitments) obligations under the Paris Climate Agreement.

Countries already signed on include: France, Germany, Argentina, Australia, Austria, Bulgaria, Costa Rica, Ivory Coast, Denmark, Finland, Hungary, Ireland, Japan, Morocco, Mexico, New Zealand, Poland, Portugal, and Uruguay.

Question Three: Does the 4/1000 Initiative propose that we can reverse global warming and feed the world without drastically reducing fossil fuel emissions?

Answer: No. The proponents of the 4/1000 Initiative believe that we need to achieve both zero fossil fuel emissions and maximum drawdown of excess CO2 from the atmosphere over the next 25 years.

Question Four: Why is this global Initiative called the “Four for 1000 Initiative?”

Answer: 4/1000 refers to the average percentage of soil carbon increase that we need to achieve every year for the next 25 years in order to stabilize the climate and reverse global warming.

A 4/1000 increase in the amount of carbon stored in global soils (currently 1.5-2.5 trillion tons, depending on how deep you measure the carbon) over the next 25 years, combined with zero fossil fuel emissions, will enable us to sequester enough additional carbon (150-250 billion tons, or 6-10 billion tons per year) in our soils and forests to bring the atmosphere back to the pre-industrial level of 280 ppm of CO2 required to stabilize the climate, increase soil fertility, improve public health, secure food sovereignty, reduce global strife, and reverse global warming.

Question Five: Is it really possible to achieve the 4/1000 carbon drawdown goal of sequestering 6-10 billion tons of carbon per year, and continuing this for the next 25 years?

Answer: Yes, it is possible for global regenerative food, farming and land use (including forestry) practices to sequester 6-10 billion tons of carbon per year. How do we know this? Because the earth’s 22 billion acres of farmland, pasture and forests—even in their currently degraded condition—are already sequestering a net 1.5 billion tons of carbon annually. And because millions of organic or transition-to-regenerative farmers and ranchers and—“best practitioners”—are already sequestering far more than 4/1000 percent in additional soil carbon every year. Some report sequestering as much as 600 times this amount.

Question Six: What are the respective roles of consumers, farmers and other sectors in moving to a regenerative system of food, farming and land use?

Answer: Regenerative food, farming and land use will require a radical transformation in consciousness and in purchasing habits among a critical mass of 3-4 billion food and fiber consumers in the global North and the South.

On a global scale, consumers will need to move away from purchasing trillions of dollars of chemical, GMO and energy-intensive industrial agriculture foods, including meat, dairy and poultry from factory farms, and highly processed and packaged foods. Consumers also will need to eliminate food waste.

Reversing climate change and feeding the world will also require a transformation in production practices by a critical mass of the world’s 500 million small farmers, 200 million herders and 50 million large farmers. Regenerative farming methods include: holistic management and planned rotational grazing of livestock; cover-cropping; no-till practices; agro-forestry; diverse crop rotations, including integrating livestock grazing; use of compost, manure and biochar; and use of deeper-rooting plants and perennials. Synthetic fertilizers and herbicides, and GMO monocultures are not included in regenerative farming methods.

Forest and fishing communities, homeowners and the approximately one billion urban food producers, gardeners and landscape managers also have a major role to play in the transition to regenerative agriculture and land-management system.

Question Seven: Is regenerative food and farming the same as organic, agro-ecological farming or rotational grazing?

Answer: No. Most practitioners of organic, agro-ecological and rotational grazing methods, certified or not, can be described as “potentially regenerative” or in “transition to regenerative.”

There are a number of terms used to describe ecological farming and ranching practices across the world, including agro-ecology, agro-forestry, permaculture, biodynamic, holistic management or grazing, conservation agriculture, organic, and others. All these agricultural systems support soil conservation practices to a certain degree. However, only regenerative food and farming has as its central focus the maximization of soil health, carbon sequestration and biodiversity.

Question Eight: What are the main driving forces of global warming and climate instability? What roles do industrial agriculture, factory farming, GMO seeds, food processing, packaging, food waste, and mindless consumerism play in emitting greenhouse gases and degrading the soil and forests’ ability to sequester carbon and enhance biodiversity?

Answer: If you look closely at the entire process (often called the “carbon footprint”) of global food, farming and land use, our current chemical- and GMO-intensive, industrial, globalized, wasteful and highly processed system of food and fiber produces an alarming 44%-57% of all greenhouse gas emissions, including CO2, methane and nitrous oxide.

Of this 44%-57% figure, the majority of emissions come from the world’s 50 million large industrial, chemical and GMO-intensive farmers and factory farms, who control 75% of all farm and, and produce 30% of the world’s food. (These figures contrast sharply with the role played by the 500 million smallholder farms and 200 million small herders who cultivate crops and graze animals on 25% of the land, while producing 70% of the world’s food).

In terms of the categories of food and farming greenhouse gas emissions this 44%-57% figure breaks down as follows:

• direct use of oil and gas in farming: 11%-15%

• deforestation 10%-15%

• transport 5%-6%

• processing and packaging 8%-10%

• freezing and retail 2%-4%

• waste 3%-4%.

We’ll never reach zero fossil fuel/greenhouse gas (GHG) emissions, much less sequester a critical mass of excess atmospheric CO2, without a fundamental transformation of our entire food, farming, and land use system.

Question Nine: What is the current market share of Regenerative food and farming versus degenerative?

Answer: Global consumers living beyond the bare subsistence level (approximately 50% of the world’s population), as opposed to those three billion or more living at subsistence level, now spend $7.55 trillion on food. Much of that food is produced by the world’s 50 million large farmers and ranchers, who use degenerative, rather than regenerative practices.

Of course many of the world’s 700 million small subsistence farmers and herders are also using chemicals, grazing animals improperly, undermining soil fertility, and destroying wetlands and forests under the pressures of poverty and because they lack of access to good land, technical assistance, financing, markets and other resources.

About 75% of all food sold today in the Global North and among the middle classes of the developing world is low-nutrient processed food. And almost half of total food produced is either wasted or overconsumed.

The hidden costs of our degenerative food and farming system are staggering: $4.8 trillion in annual expenditures for social, health and environmental damages. (ETC Group, “Who Will Feed the World?” 2017)

There is very little food and fiber produced today that can genuinely be described as 100% regenerative. In terms of less degenerative or potentially “transition to regenerative,” the global certified (or non-certified) organic food, grass-fed and sustainably produced food market is considerably less than $1 trillion.

Question Ten: What is most important in terms of driving food, farming and land use in a regenerative direction: public policy or marketplace demand?

Answer: Both are essential. So far marketplace demand and the survival of traditional farming and animal husbandry practices are driving regenerative and potentially regenerative food, farming and land use, although support for organic and grass- fed production is increasing in some regions, especially the U.S. and Europe. In some countries most of the beef production is currently 100% grass-fed (Australia and Uruguay for example), and therefore at least semi-regenerative.

Unfortunately, governments of the world provide $600 billion a year or more in subsidies to industrial agriculture, GMOs, globalized exports and factory farms. Only a fraction of government subsidies go to organic, grass-fed, or what can be called “transition-to-regenerative” practices.

In the long run we will need both marketplace pressure and billions of dollars in annual public policy/public financing to move the majority of the world’s 750 million farms and ranches in a regenerative direction, as well as to carry out large-scale ecosystem restoration, reforestation and wetlands preservation.

Question Eleven: How can conscious consumers and the current minority of regenerative farmers, ranchers and land managers get more of their counterparts on board?

Mass public education for consumers, farmers and land managers on the health, environmental, social, economic, and climate benefits of regenerative food, farming and land use, combined with free technical assistance, training and financial incentives for farmers will be necessary to move from degenerative consumption and production practices to regenerative.

In each local area, region and nation best practices and practitioners will need to be identified and publicized. We also will need to establish regenerative pilot projects, provide farmer-to-farmer education, and scale up of public policy reform and financing.

Question Twelve: How many farmers, herders, ranchers and land managers are currently carrying out regenerative, or potentially regenerative, as opposed to degenerative, practices?

Answer: There are 2.5 million certified organic farms in 120 nations that can be characterized as potentially regenerative or transition-to-regenerative. There are probably 10-20 times more who are farming organically (but are not certified) and are supplying their families and local markets.

The Food and Agriculture Organization of the United Nations estimates that 25-50 million of the world’s 750 million farms are utilizing traditional, sustainable practices, and could potentially make the transition to regenerative practices with sufficient technical and financial assistance.

Question Thirteen: What percentage of consumers and farmers will have to adopt regenerative production and consumption practices if we are to meet the goals of the Four for 1000 Initiative?

Answer: Focusing on the world’s current 25-50 million “potentially regenerative” farmers, herders and ranchers, we need to move these sustainable producers into full or near-full regenerative mode over the next five years (2017-2022). At the same time, we need to move another 50 million from chemical or degenerative practices into transition-to-regenerative practices (organic, whether certified or not, grass-fed, permaculture, agro-ecological). Then we need to double this pace between 2022-2027, so that we end up in 10 years with 100 million regenerative producers and another 100 million “transition-to-regenerative” producers.

By 2032 we need to accelerate this process so as to have the majority of the world’s farmers, herders and land managers (400 million or so farms and ranches) involved in regenerative or near regenerative practices. During this same time periode, 2017-2032, we will have to make a rapid transition to 100% renewable energy, and convert the majority of the world’s consumers to regenerative thinking and purchasing.

All of this presupposes strong marketplace pressure on food and fiber corporations to transfer from degenerative to regenerative supply chains, and fundamental changes in government policy by cities, counties, nation states and international agencies and funding institutions.

Question Fourteen: What are the major obstacles to achieving the goals of the 4 for 1000 Initiative?

Answer: The main obstacles to achieving the goals of  the 4/1000 Initiative are:

• lack of public knowledge, not only of the 4/1000 Initiative, but of the drawdown/regeneration agriculture, consumption, and land use perspectives in general

• massive taxpayer subsidies in most of the countries of the world of corporate-controlled degenerative food, farming and land use practices

• lack of unity and cooperation between food, farming, climate, environmental, peace, democracy, natural health, and justice movements, both within national borders and across borders internationally

• lack of public policy initiatives and financing for regenerative initiatives such as 4/1000.

All these degeneration drivers are related to corporate control of the national and international economy and corporate corruption of the political process.

Question Fifteen: How can I persuade my organization, city, county, state or nation to sign on to the Four for 1000 Initiative?

Answer: We need to carefully build strategic core groups and coalitions at our organizational, local, county, state and national levels, with participation from food, farming, climate, environmental, peace, democracy, natural health, and justice movements. Additionally, we need to use public education and grassroots lobbying to get our local, county, state and national governments to sign on to the 4/1000 Initiative and to generate and support significate change in marketplace dynamics and public policy.

Question Sixteen: Where can I find out more about regenerative food, farming and land use, so that I can become an effective citizen lobbyist and activist?

Answer: Visit the Regeneration International website.

And check out the resources at Bio4climate.org.

Question Seventeen: Where can I find out more about the Four for 1000 Initiative?

Answer: Visit the 4/1000 website.

Read this policy brief.

DOWNLOAD THE PDF HERE

Natural Intelligence Farming: Ian and Dianne Haggerty

Author: Christopher Johns | Published: August 3, 2017 

Key Point

  • Natural Intelligence farming uses natural processes combined with modern agricultural technology to produce food and fibre of optimum nutrition and quality while enhancing positive ecosystem development.
  • Natural Intelligence farming has the potential to sustainably regenerate the agricultural landscape, restore biodiversity and to sequester greenhouse gasses in the soil as beneficial soil carbon.
  • There is a direct link between soil health and human health and there is a growing body of research into this relationship between soil and plant/animal, human and environmental health.
  •  Natural intelligence farming can be applied to broad-acre agricultural production with only small changes to capital equipment and a reduction in operating costs and increased productivity.
  • Once the appropriate logistic infrastructure is available, the produce from Natural Intelligence farming can be market differentiated and priced accordingly for its nutrient diversity and absence of chemicals and other toxins.

Introduction

Natural Intelligence Farming is the term Ian and Dianne Haggerty use to describe the harnessing of the dynamic, natural relationships that exists between all the organisms in the ecosystem and the environment itself, particularly the soil. These relationships are highly complex and versatile. They involve mutually beneficial interactions between the soil, plant seeds and roots, microorganisms, and the ruminants that feed on the plants and cycle dung and microbes back to the soil. Understanding these relationships requires a holistic engagement with the agricultural ecosystem and the body of scientific knowledge supporting this understanding is still incomplete. The key to natural intelligence farming is not to hinder or obstruct the interactions that support and inform these relationships.  The Haggerty’s aim is to facilitate natural intelligence with modern farming methods to create regenerative agricultural ecosystems that produce optimal food and fibre products.

Ian and Dianne farm approximately 13,000 hectares of land in Western Australia’s central wheatbelt, around 190 kilometres north east of Perth. After years of conventional farming, the Haggerty’s realised that their system was vulnerable to dry seasons. Input costs were steadily increasing without corresponding increases in productivity. Soil tests showed adequate nutrient levels, but tissue tests revealed nutrients were not getting to plants in appropriate balance, despite a comprehensive mineral fertiliser program. To top it off, rainfall in recent years had been less than half the annual average often falling in 3 to 5 mm events followed by windy weather, meaning much was lost to evaporation. Maximising crop production in dry years had become a real struggle and hard pans in their soils were severely restricting root growth. So, the Haggerty’s started to research biologically-based farming systems with the aim of increasing their soil’s microbial population, nutrient availability and moisture holding capacity.  What followed was a massive learning curve combining and adapting some of the world’s best ecological knowledge with much ground truthing and extension in harsh Western Australian semi-arid agricultural zone conditions.

Ian and Dianne have a life mission to facilitate positive global change by rebuilding soils in semi-arid regions, producing premium food and fibre and supporting the nutritional needs of humanity to optimise health. In this Feature Interview, FDI takes the opportunity to interview Ian and Dianne and investigate what it is that they are doing differently from other farmers and the benefits of their methods for productivity, ecological regeneration and plant, animal and human health.

Interview

FDI: As an introduction to this Interview could you give us a short history to your association with agriculture and the land?

I&DH:  While coming from long family backgrounds of farmers, neither of us was fortunate enough to inherit a farm so we purchased our own 660ha property in 1994 next door to Di’s parents. It was in the years immediately prior to purchasing our farm, while owning and operating a roadhouse in the Kimberley that we were exposed to some interesting ideas on land management through our contact and friendship with Robyn Tredwell of Birdwood Downs Station (Robyn was the 1995 ABC Rural woman of the year). Her views on using livestock as tools to “Feed, Seed and Weed” the land, penetrated deeply into our psyche even though we were not involved with a rural enterprise at the time.

Purchasing a farm took all our capital reserves so for the first few years we share-farmed our land with Di’s father and worked in return for use of his machinery to grow our crops.

While successfully farming conventionally in the 1990s, and slowly beginning to piece together a working range of plant machinery, it didn’t take long for us to realise that moisture in the soil was key to profitability and that hanging onto that moisture was critical to make a viable crop out of a poor spring. This fact, along with a questioning mind and noticing that there were discrepancies between soil test and tissue test results, sparked a drive for real answers. Reducing risk and increasing profitability year in year out were key goals for the business to progress.

In 2001, we embarked on learning how to improve soil health and productivity in the cropping program. Dr Elaine Ingham’s message of the miracle work of soil microbiological communities in providing optimum balanced nutrition to plants and prevention of disease and insect attack through soil health resonated with us.  At the same time, we consulted with Jane Slattery of South Australia to develop an understanding of ruminant nutrition, intuition and interconnectedness with landscape health.  Working on both the soil and animal health aspects concurrently enabled some wonderful synergies to express and assist with fast tracking the ecological progress of the farm.

 Dr Arden Andersen’s message of the direct link between soil health and human health outcomes rang alarm bells for me [Dianne] as an Occupational Therapist, practising Early Intervention Paediatric and Aged Care occupational therapy as the preventative model for health care which was firmly entrenched. A keen awareness of responsibility as food producers ensued. This was the beginning of an intense learning curve where we pursued the knowledge of many other international and national scientists, leaders in the field of soil health and its relationship to animal, human and environmental and global health.

In 2009 and 2010 we were privileged to be introduced to Dr Christine Jones, Dr Maarten Stapper and Walter Jehne who had considerable knowledge on working soil health principles in Australian agricultural environments. Dr Jones’ “liquid carbon pathway” answered many questions of what was happening within the soil to improve its friability and moisture holding capacity. This was confirmed with deep soil carbon testing in 2012 that confirmed observations with sound figures.  On similar soil types to neighbouring properties, soil carbon was improved by 10t/ha on our cropping land, an increase of 41.46% in the top 30cm of soil.

 It was this knowledge, along with an interest in using livestock to better “feed, seed and weed,” that first motivated us to embark on what has become a life-long passion to farm, together with natural processes, while maintaining a profitable farm business and improving natural capital.

FDI: What are the benefits of your agricultural practices?

I&DH: Our agricultural methods can make a significant contribution to improving global trends in environmental management and human health. There is an existing and growing body of scientific research supporting a wide range of benefits associated with our farming methods. We believe that natural intelligence farming can make a positive contribution in the following areas:

  • Carbon sequestration while producing optimal food and fibre production.
  • Increased biodiversity, particularly microbiological biodiversity in soil.
  • Nil chemical residues tested in grains grown.
  • Nutritional balance in foods grown
  • Decreased or elimination use of synthetic fertilisers.
  • Increased microbiome, the number and diversity of microorganisms in an ecosystem such as the digestive system.
  • Production of fully pasture fed meat that is high in omega-3, conjugated linoleic acid, vitamin E and has greater mineral diversity.
  • Greater reliability in grain crop yields.
  • Crop disease resistance resulting in decreased or eliminated use of fungicides and pesticides.
  • Lower energy requirement for agricultural production.
  • Improved equity.
KEEP READING ON FUTURE DIRECTIONS INTERNATIONAL 

Mastering Soil Health Elevates Farm Productivity, Sustainability

Author: Dennis Pollock | Published: June 19, 2017

Soil health best achieved by minimal soil disturbance, maximizing plant diversity, living roots yearlong, covered soil at all times with plants-residue

It seems in recent years it has become all the rage to make sure that the dirt under our feet – and plants or trees – is healthy in order to sustain farming.

Soil health was the chief topic at a University of California soil health field day held at Five Points, attended by about 200 people including boots-on-the-ground farmers and researchers.

Jeff Mitchell, University of California (UC) Cooperative Extension cropping systems specialist at Fresno County, has been toiling in the trenches – literally – for some 20 years, seeking to illustrate the value of cover crops, and no or low-till agriculture.

At the workshop held at the UC West Side Field Station, Mitchell had trenches to showcase, pits that showed differences between conventional and no-till farming. Speakers on hand discussed some of those differences.

Improved soil health

Mitchell, the growers, and others emphasized that managing for better soil health was best achieved by minimizing soil disturbance, maximizing the diversity of plants in rotation or used as cover crops, keeping living roots in the soil as much as possible, and keeping the soil covered with plants and plant residue at all times.

“I have something growing in the ground 365 days a year,” said Scott Park with Park Farming in Meridian in the Sacramento Valley. “Having roots in the ground is 10,000 times better than adding biomass.”

KEEP READING ON WESTERN FARM PRESS

Land Losses and Lessons on the Great Plains

Author: Peter Carrels | Published: July 7, 2017

Gabe Brown’s 5,200-acre farm and ranch in central North Dakota practically straddles the 100th meridian, the line that historically divided Eastern lands that were farmed from the drier Western lands that were grazed by livestock.

That geographic boundary, of course, has always been somewhat blurry. But in recent years, row-crop agriculture on an industrial scale has pushed the dry line westward. Modern sod-busting has gobbled up vast expanses of native grasslands, markedly enlarging the nation’s corn and soybean acres.

Critics watched this happen but weren’t able to quantify the ecological alteration. Now, an analysis issued by the World Wildlife Fund, Plowprint Report, confirms just how extensively the American Great Plains has been transformed. The Great Plains region, the short and mixed-grass portion of the North American prairie, includes lands from the Canadian border east of the Rocky Mountains, between Great Falls, Montana, and Fargo, North Dakota, and stretching south to Texas — some 800 million acres in total.

Destruction of the Eastern portion of the continent’s prairie region — the tallgrass part — was caused by conversion to corn and soybean fields and is nearly complete. Less than 1 percent of the original tallgrass prairie ecosystem survives. The Plowprint study reveals that since 2009, more than 53 million acres of prairie on the Great Plains has been plowed and converted to corn, soybeans and wheat. That figure — an area that equals the size of Kansas — represents about 13 percent of the estimated 419 million acres of Great Plains grasslands that had survived in its native condition.

Fortunately, stewardship models show how farming can be less damaging and more sustainable. For example, Gabe Brown changed the way he managed his land after suffering four years —1995 to 1998 — of hail and drought. Nearly broke and lacking access to capital to buy seeds and chemicals, Brown re-examined his approach to farming. Finding that his soils had dramatically deteriorated through conventional farming practices, he started avoiding tillage and now relies on cover crops, perennial grasses and a diversity of income streams. When many of his neighbors plowed pastures to plant corn, Brown did the opposite, reducing row crops from 2,000 acres to 800 acres and re-vegetating 1,200 acres back into prairie. His operation also emphasized grazing and grasses instead of growing annual grains.

“It’s not easy to admit that I farmed the wrong way for many years,” Brown said. “But we’ve completely weaned ourselves from government programs, stopped using synthetic fertilizers, minimized herbicide use, and in the process enriched and even built our soils.”

KEEP READING ON EAST OREGONIAN

Great Grazing Beats Most Droughts

Author: Alan Newport | Published: August 2, 2017 

I had the opportunity to visit with a man today about the benefits of managed grazing in a drought, and I think my list of advantages might be useful to others.

These are things I’ve observed and things I’ve gleaned from others as they have managed their way through droughts. In some cases there is science to bear witness to these truths, and in others they are anecdotal but widely accepted among top grazing managers.

The ugly

The bad news is that at some point, drought can get bad enough you may need to destock completely. The good news is, as part of your grazing plans, grazing records, and your records of rainfall and resulting forage production, you should have done so in a controlled method that garnered you the highest price for part of your stock because you sold earlier than everyone else. The other piece of good news is good grazing management will set you up for a faster recovery, and likely a much more successful recovery than continuous graziers.

Beef Producer columnist and long-time holistic grazier Walt Davis says many years ago he studied the rainfall records and stocking rate records from the research station at San Angelo, Texas, and found all the major declines in stocking rate occurred after droughts. These were new, lower plateaus of production from which the forage never recovered. Of course, the research station was continuously grazed.

The good

Just how much drought resistance you have depends foremost on how much progress you’ve made increasing soil organic matter through good grazing. The key is full recovery of plants and the deep roots that puts down. There are many ways to do this, as we’ve covered over the years. R.P. Cooke uses full recovery all the time, all year around, as do many others. Some graze part of the property on a schedule that uses two or three grazings during the growing season while recovering part of the ranch fully. Then they graze in the winter on the fully recovered and heavily stockpiled forage.

One thing I know is people who use faster rotations and less recovery time, concentrating on keeping forage vegetative and at the highest quality, have much less drought resistance. Their advantage is typically they know about how many days of forage they have left.

Better timing

Great graziers keep good records on rainfall and forage production (usually animal days per acre) or similar, so they understand when they are getting in trouble before others. Selling a portion of your animals early in a drought cycle when prices are good is an inconvenience, but not a disaster. Selling a large proportion of your animals, or all of them, well into a drought and after prices are down significantly is absolutely a disaster.

Great graziers also know how many days of forage they have ahead of their cattle and when they will run out. They also can monitor regrowth in grazed paddocks to see if that supply will expand.

Better soil

Those who practice complete recovery of forages as part of their grazing management will have soil that’s healthier and has higher organic matter and more life. The plant roots will be deeper, fuller and higher functioning. The arbuscular mycorrhizal fungi will be healthier and will provide more water and more nutrients to the plants so they can thrive. Higher organic matter and more shade on the soil surface can catch and hold much more water — each 1% soil organic matter can hold about 25,000 gallons of water per inch of soil. That alone can fight back a lot of drought.

More grass

The records kept by great graziers show they increase the animal days per acre and therefore increase their stocking rates over time. We have reported many, many times over the years that graziers who do a good job nearly always double their stocking rates, and that many triple or quadruple their stocking rates. This proves they are growing more grass.

Incidentally, animal days per acre or animal unit days are just measurements of how many grazing days you get per unit of livestock.

KEEP READING ON BEEF PRODUCER