Posts

Regenerative Ranching Could Solve Climate Change

A new study from Oregon State University shows regenerative ranching increases adaptability and socioeconomic status while helping to mitigate climate change.   

Climate Reality Project describes regenerative agriculture as a system of farming principles and practices that seeks to rehabilitate and enhance the entire ecosystem of the farm by placing a heavy premium on soil health with attention also paid to water management, fertilizer use, and more.   

According to Regeneration International, this method can help to reverse climate change as it works to rebuild organic matter and restore biodiversity to the soil.   

Regenerative ranching refers to the practices familiar to most of us as organic farming. These changes are brought about by using a dynamic and holistic approach, including organic farming techniques such as cover cropscrop rotationsno till and compost. These practices encourage carbon sequestration, and can dramatically affect the climate in extremely positive ways.   

KEEP READING ON THE CORVALLIS ADVOCATE

Why Healthy Soil Means A Healthier Planet

Dirt, it turns out, has been underestimated. Healthy soil is perhaps the most essential part of a thriving ecosystem. In the face of climate change, farmers and scientists are working to better understand how soil supports a healthy planet. It turns out that without it, the rest of an ecosystem suffers.

Soil is composed of various materials, including sand, silt, stone and water. Depending on the geographic location, it can be sandy, dense, rocky or porous. Soil is a living thing and composed of millions of tiny organisms that help keep it healthy. Different types of insects, bacteria and fungi all work together to keep things in balance. Fungal networks, known as mycelium, play a vital role in helping dirt communicate with plant roots. In fact, the largest known organism in the world is a fungus that covers 4 square miles of forest in the Pacific Northwest.

Modern farming practices, land development and pollution are threatening the health of our planet.

KEEP READING ON THE ENVIRONMENTAL MAGAZINE

David Montgomery: “Estamos cerca de una revolución basada en la salud del suelo”

En el marco del XXVIII Congreso de Aapresid, ‘siempre vivo, siempre verde’, el geólogo de la Universidad de Washington, David Montgomery, habló del rol de los suelos en la civilización y la importancia de su restauración en términos del futuro de la humanidad.

“Estamos cerca de una revolución basada en la salud del suelo; en un punto de cambio en la historia. Podemos convertir a la agricultura en actor de recuperación del suelo en lugar de degradador. La reconstrucción del suelo es una de las inversiones más grandes que puede hacer hoy la humanidad”, dijo.

“Se habla de la deforestación como causante principal de esta degradación, pero la realidad es que el arado contribuyó más que el hacha”, advirtió. A lo largo de la charla también explicó que la erosión y degradación del suelo jugó un rol critico en la caída de antiguas civilizaciones, desde la Europa neolítica hasta Roma.

CONTINUE LEYENDO EN LA NACION

Cattle Are Part of the Climate Solution

Rodale Institute’s updated climate change white paper, “Regenerative Agriculture and the Soil Carbon Solution,” will be published September 25th. To learn more, visit RodaleInstitute.org/Climate2020.

We’re in the process of updating Rodale Institute’s Regenerative Agriculture and the Soil Carbon Solution white paper and we wanted to talk to you about your influential work with cattle and rangeland soil carbon sequestration.

So to start, a question of semantics—there’s a lot of terms for management intensive grazing, you use adaptive multi-paddock or AMP, there’s mob grazing, high intensity rotational grazing, holistic grazing management, and now regenerative grazing. Are there practical differences between these systems?

There are small differences, but they’re all part of the same cadre in terms of a general way of doing things and the philosophy. Prior to starting our regenerative grazing studies in 1999, we worked with the NRCS who did all the soil mapping around the nation. We asked them to introduce us to farmers and ranchers who had the highest soil carbon levels. Without a single exception, they were all following Holistic Management, or a couple of variations around that. Our research has been following up on that ever since.

 

KEEP READING ON RODALE INSTITUTE

Fungi Have Unexpected Role to Play in Fight Against Climate Change

TAIPEI (Taiwan News) — Planting more trees seems like a logical way of counteracting climate change, as forests facilitate carbon sequestration, the process of capturing and storing atmospheric carbon dioxide (CO2), but as efforts to remove CO2 from the atmosphere intensify, organisms from another kingdom — fungi — are showing they have an indispensable role to play in this process.

“Almost all plant life coexists with fungi during a certain period, if not the entire life cycle of a plant, but the reasons for this coexistence and its effects have not yet been fully deciphered,” said Ko-Hsuan “Koko” Chen, an assistant research fellow at Academia Sinica’s Biodiversity Research Center. Her lab studies plant-fungal symbiosis, especially between fungi and early photosynthetic organisms such as mosses.

Funguses are commonly used as ingredients in food and in medicines. However, their dynamic relationship with plants is not so well known and is significantly tied to the prosperity of plant species and element cycles, which are defined as the biogeochemical pathways in which elements are transformed by natural processes.

KEEP READING ON TAIWAN NEWS

Unlocking the Potential of Soil Can Help Farmers Beat Climate Change

Farmers are the stewards of our planet’s precious soil, one of the least understood and untapped defenses against climate change. Because of its massive potential to store carbon and foundational role in growing our food supply, soil makes farming a solution for both climate change and food security.

The threat to food security

Farming is capital-intensive and farmers are at the mercy of volatile global commodity markets, trade disputes, regulatory changes, weather, pests, and disease. Factor in climate change and you can include droughts, floods and temperature shifts.

We need to change how we grow our food because:

  • climate change will increasingly impact farm yields
  • how we farm can help mitigate climate change
  • helping our farmers unlock the full potential of soil will help them meet growing food demands while remaining profitable
  • restoring the carbon-holding potential of our soil combats climate change.

Soil and climate change

The last few years have been among the hottest on record. As of May 2020, the concentration of carbon dioxide (CO2)​​​​​​​ in our atmosphere has been the highest it’s been in human history.

Waiter, There’s a Problem with My Paradigm!

This article is part of the #CuraDaTerra essay series, focused on Indigenous perspectives and alternatives to industrial capitalism.

Certain humans have plotted for centuries to kill the Amazon.  Photographic evidence confirms that this scheme is now reaching a flaming, thundering crescendo, with tens of thousands of intentional fires and bulldozers tearing through the Amazonian rainforest, destroying acres every second.

We hasten to add that other humans are innocent bystanders, while yet other humans go further and have a plan to save that vast ecosystem.

But we have gotten well ahead of our story; first let’s enjoy a delicious bowl of peach-palm soup. For us, the soup’s richness dominates the culinary experience.  In both aroma and color there is a suggestion of squash, but that hint of sweet flavor is secondary to the dense, opulent texture that coats one’s mouth like whipped butter.

Or when we’re ravenous and need survival calories, we just stew the fruits in salted water, peel them, and eat what seems like the world’s finest roasted chestnut.

KEEP READING ON KOSMOS JOURNAL

Planet Watch: Regenerative Agriculture as One Answer to Planetary Crisis

Over the last few decades, modern industrialised agriculture has wrought havoc on natural systems. It has razed forests, decimated biodiversity, and has done immense damage to soils. Most individual farmers may just want to turn a profit to feed their families and pay off their mortgages, but collectively, if you look at what’s happening around the world, this form of agriculture is a major contributor to the ongoing degradation of our planet.

A primary impact of agriculture is soil degradation. Land-clearing, overgrazing, the impact of heavy farming equipment, chemical fertilisers and pesticides, and irrigation, all contribute to soil degradation. This has resulted in the degradation of one-third of the world’s soils:

  • 30 per cent of the world’s cropland has been abandoned over the past 40 years due to degradation and desertification,
  • 52 per cent of the land used for agriculture is moderately to severely affected by soil degradation.
  • 12 million hectares of cropland are lost per year (23 hectares per minute)

KEEP READING ON ECHO NETDAILY

El polvo de roca aplicado a campos agrícolas podría ayudar a capturar 2B de toneladas de CO2

El polvo de roca que se extiende sobre los campos agrícolas del planeta puede ser una solución climática con el potencial de eliminar hasta dos mil millones de toneladas de dióxido de carbono (CO2) de la atmósfera, según investigadores británicos.

Eso es más que las industrias mundiales de aviación y transporte marítimo combinadas, o aproximadamente la mitad de las emisiones actuales de Europa. La investigación publicada la semana pasada en la revista Nature analiza cómo la técnica podría usarse en diferentes países, con optimismo sobre cómo algunos de los emisores de CO2 más altos del mundo, incluidos China, India y Brasil, son los más beneficiados en términos de eliminación de CO2.

El equipo de científicos, dirigido por David Beerling del Centro Leverhulme para la Mitigación del Cambio Climático de la Universidad de Sheffield, también incluyó expertos de instituciones en los Estados Unidos y Bélgica, entre ellos el líder mundial del clima James Hansen del Instituto de la Tierra en la Universidad de Columbia. Explican cómo la meteorización de rocas, como se conoce la técnica, también podría proporcionar un uso de economía circular para subproductos mineros y materiales de construcción reciclados.

CONTINUE LEYENDO EN ECOPORTAL

Investors Say Agroforestry Isn’t Just Climate Friendly — It’s Also Profitable

In the latter part of 2016, Ethan Steinberg and two of his friends planned a driving tour across the U.S. to interview farmers. Their goal was to solve a riddle that had been bothering each of them for some time. Why was it, they wondered, that American agriculture basically ignored trees?

This was no esoteric inquiry. According to a growing body of scientific research, incorporating trees into farmland benefits everything from soil health to crop production to the climate. Steinberg and his friends, Jeremy Kaufman and Harrison Greene, also suspected it might yield something else: money.

“We had noticed there was a lot of discussion and movement of capital into holistic grazing, no till, cover cropping,” Steinberg recalls, referencing some of the land- and climate-friendly agricultural practices that have been garnering environmental and business attention recently. “We thought, what about trees? That’s when a lightbulb went off.”

The trio created Propagate Ventures, a company that now offers farmers software-based economic analysis, on-the-ground project management, and investor financing to help add trees and tree crops to agricultural models. One of Propagate’s key goals, Steinberg explained, was to get capital from interested investors to the farmers who need it — something he saw as a longtime barrier to this sort of tree-based agriculture.

Propagate quickly started attracting attention. Over the past two years, the group, based in New York and Colorado has expanded into eight states, primarily in the Northeast and Mid-Atlantic, and is now working with 20 different farms. Last month, it announced that it had received $1.5 million in seed funding from Boston-based Neglected Climate Opportunities, a wholly owned subsidiary of the Jeremy and Hannelore Grantham Environmental Trust.

A Propagate Ventures agroforestry project in Hudson, NY, planted in April 2020. Image courtesy of Propagate Ventures

“My hope is that they can help farmers diversify their production systems and sequester carbon,” says Eric Smith, investment officer for the trust. “In a perfect world, we’d have 10 to 20 percent of U.S. land production in agroforestry.”

For the past few years, private sector interest in “sustainable” and “climate-friendly” efforts has skyrocketed. Haim Israel, Bank of America’s head of thematic investment, suggested at the World Economic Forum earlier this year that the climate solutions market could double from $1 trillion today to $2 trillion by 2025. Flows to sustainable funds in the U.S. have been increasing dramatically, setting records even amid the COVID-19 pandemic, according to the financial services firm Morningstar.

And while agriculture investment is only a small subset of these numbers, there are signs that investments in “regenerative agriculture,” practices that improve rather degrade than the earth, are also increasing rapidly. In a 2019 report, the Croatan Institute, a research institute based in Durham, North Carolina, found some $47.5 billion worth of investment assets in the U.S. with regenerative agriculture criteria.

“The capital landscape in the U.S. and globally is really shifting,” says David LeZaks, senior fellow at the Croatan Institute. “People are beginning to ask more questions about how their money is working for them as it relates to financial returns, or how it might be working against them in the creation of extractive economies, climate change or labor issues.”

Agroforestry, the ancient practice of incorporating trees into farming, is just one subset of regenerative agriculture, which itself is a subset of the much larger “ESG,” or Environmental, Social and Governance, investment world. But according to Smith and Steinberg, along with a small but growing number of financiers, entrepreneurs and company executives, it is one particularly ripe for investment.

Although relatively rare in the U.S., agroforestry is a widespread agricultural practice across the globe. Project Drawdown, a climate change mitigation think tank that ranks climate solutions, estimates that some 650 million hectares (1.6 billion acres) of land are currently in agroforestry systems; other groups put the number even higher. And the estimates for returns on those systems are also significant, according to proponents.

Vulcan Farm in Illinois combines intensive perennial polyculture, windbreaks, alley cropping, and silvopasture, and also features an innovative long-term lease model that provides options to non-operator landholders and land access for agroforestry farmers. Photo courtesy of Savanna Institute.

Ernst Götsch, a leader in the regenerative agriculture world, estimates that agroforestry systems can create eight times more profit than conventional agriculture. Harry Assenmacher, founder of the German company Forest Finance, which connects investors to sustainable forestry and agroforestry projects, said in a 2019 interview that he expects between 4% and 7% return on investments at least; his company had already paid out $7.5 million in gains to investors, with more income expected to be generated later.

This has led to a wide variety of for-profit interest in agroforestry. There are small startups, such as Propagate, and small farmers, such as Martin Anderton and Jono Neiger, who raise chickens alongside new chestnut trees on a swath of land in western Massachusetts. In Mexico, Ronnie Cummins, co-founder and international director of the Organic Consumers Association, is courting investors for funds to support a new agave agroforestry project. Small coffee companies, such as Dean’s Beans, are using the farming method, as are larger farms, such as former U.S. vice president Al Gore’s Caney Fork Farms. Some of the largest chocolate companies in the world are investing in agroforestry.

“We are indeed seeing a growing interest from the private sector,” says Dietmar Stoian, lead scientist for value chains, private sector engagement and investments with the research group World Agroforestry, also known by the acronym ICRAF. “And for some of them, the idea of agroforestry is quite new.”

Part of this, he and others say, is growing awareness about agroforestry’s climate benefits.

Gains for the climate, too

According to Project Drawdown, agroforestry practices are some of the best natural methods to pull carbon out of the air. The group ranked silvopasture, a method that incorporates trees and livestock together, as the ninth most impactful climate change solution in the world, above rooftop solar power, electric vehicles and geothermal energy.

If farmers increased silvopasture acreage from approximately 550 million hectares today to about 770 million hectares by 2050 (1.36 billion acres to 1.9 billion acres), Drawdown estimated carbon dioxide emissions could be reduced over those 30 years by up to 42 gigatons — more than enough to offset all of the carbon dioxide emitted by humans globally in 2015, according to NOAA — and could return $206 billion to $273 billion on investment.

Part of the reason that agroforestry practices are so climate friendly (systems without livestock, i.e. ‘normal’ agroforestry like shade grown coffee, for example, are also estimated by Drawdown to return well on investment, while sequestering 4.45 tons of carbon per hectare per year) is because of what they replace.

Photo of silvopasture system in Georgia by Mack Evans. Image via U.S. National Agroforestry Center.

Traditional livestock farming, for instance, is carbon intensive. Trees are cut down for pasture, fossil fuels are used as fertilizer for feed, and that feed is transported across borders, and sometimes the world, using even more fossil fuels.

Livestock raised in concentrated animal feeding operations (CAFOs), produce more methane than cows that graze on grass. A silvopasture system, on the other hand, involves planting trees in pastures — or at least not cutting them down. Farmers rotate livestock from place to place, allowing soil to hold onto more carbon.

There are similar benefits to other types of agroforestry practices. Forest farming, for instance, involves growing a variety of crops under a forest canopy — a process that can improve biodiversity and soil quality, and also support the root systems and carbon sequestration potential of farms.

A changing debate

Etelle Higonnet, senior campaign director at campaign group Mighty Earth, says a growing number of chocolate companies have expressed interest in incorporating agroforestry practices — a marked shift from when she first started advocating for that approach.

“When we first started talking to chocolate companies and traders about agroforestry, pretty much everybody thought I was a nutter,” she says. “But fast forward three years on and pretty much every major chocolate company and cocoa trader is developing an agroforestry plan.”

What that means on the ground, though, can vary widely, she says. Most of the time it is a company’s sustainability department that is pushing for agroforestry investment, not the C-suite. Some companies have committed to sourcing 100% of their cacao from agroforestry systems. Others are content with 5% of their cacao coming from farms that use agroforestry.

Alley cropping is a common form of agroforestry, where annual crops like hay, grains, or vegetables are grown between long rows of useful fruit or fodder trees. Here livestock advisor Gaabi Hathaway and herding dog Bohdi inspect ‘mulberry alley’ at Tennessee’s Caney Fork Farms. Image by Sherman Thomas courtesy of Caney Fork Farms.

What a company considers “agroforestry” can also be squishy, she points out — a situation that makes her and other climate advocates worry about companies using the term to “greenwash,” or essentially pretend to be environmentally friendly without making substantive change.

“What is agroforestry?” says Simon Konig, executive director of Climate Focus North America. “There is no clear definition. There’s an academic, philosophical definition, but there’s not a practical definition, nothing that says, ‘it includes this many species.’ Basically, agroforestry is anything you want it to be, and anything you want to write on your brochure.”

He says he has seen cases in South America where people have worked to transform degraded cattle ranches into cocoa plantations. They have planted banana trees alongside cocoa, which needs shade when young. But when the cocoa is five years old and requires more sun, the farmers take out the bananas.

“They say, ‘it’s agroforestry,’” Konig says. “So there are misunderstandings — there are different objectives and standards.”

He has been working to produce a practical agroforestry guide for cocoa and chocolate companies. One of the guide’s main takeaways, he says, is that there is not a one-size-fits-all approach to agroforestry. It depends on climate, objectives, markets, and all sorts of other variables.

This is one of the reasons that agroforestry has been slow to gain investor attention, says LeZaks of the Croatan Institute.

“There really aren’t the technical resources — the infrastructure, the products — that work to support an agroforestry sector at the moment,” LeZaks says.

Pigs raised on New Forest Farm in Wisconsin benefit from tree shade, fruits and nuts. Livestock serve multiple purposes in agroforestry, such as pest management, soil fertilization, and additional farm revenue. Photo courtesy of Savanna Institute.

While agroforestry is seen as having significant potential for the carbon offset market, its variability makes it a more complicated agricultural investment. Another challenge to agroforestry investment is time.

Tree crops take years to produce nuts, berries or timber. This can be a barrier for farmers, who often do not have extra capital to tie up for years.

It can also turn off investors.

“People are bogged down by business as usual,” says Stoian from World Agroforestry. “They have to report to shareholders. Give regular reports. It’s almost contradictory to the long-term nature of agroforestry.”

This is where Steinberg and Propagate Ventures come in. The first part of the company’s work is to fully analyze a farmer’s operation, Steinberg says. It evaluates business goals, uses geographic information system (GIS) components to map out land, and determines the trees most appropriate for the particular agricultural system. With software analytics, Propagate predicts long-term cost-to-revenue and yields, key information for both farmers and possible private investors.

After the analysis phase, Propagate helps implement the agroforestry system. It also works to connect third-party investors with farmers, using a revenue-sharing model in which the investor takes a percentage of the profit from harvested tree crops and timber.

Additionally, Propagate works to arrange commercial contracts with buyers who are interested in adding agroforestry-sourced products to their supply chains.

“Here’s an opportunity to work with farmers to increase profitability by incorporating tree crops into their operations in a way that’s context specific,” Steinberg says. “And it also starts addressing the ecological challenge that we face in agriculture and beyond.”

This report is part of Mongabay’s ongoing coverage of trends in global agroforestry, view the full series here.

Reposted with permission from Mongabay