Tag Archive for: Soil Health

Peatlands Keep a Lot of Carbon out of Earth’s Atmosphere, but That Could End with Warming and Development

But that might not be true for much longer. Warming temperatures and human actions, such as draining bogs and converting them for agriculture, threaten to turn the world’s peatlands from carbon reservoirs to carbon sources.

In a newly published study, our multidisciplinary team of 70 scientists from around the world analyzed existing research and surveyed 44 leading experts to identify factors that could change peatlands’ carbon balance now and in the future. We found that permafrost degradation, warming temperatures, rising sea levels and drought are causing many peatlands around the world to lose some of their stored carbon. This is in addition to rapid degradation caused by human activity. And unless steps are taken to protect peatlands, carbon loss could accelerate.

KEEP READING ON THE CONVERSATION

Pasar del corral al pastoreo en la pradera

En las praderas de la región de Los Ríos hay vacas que pastan durante todo el año. No se alimentan de concentrados, granos ni hormonas. Rondan por suelos verdes y frondosos, libres de fertilizantes químicos. El ganado pertenece a Carnes Manada. Su cofundador, Cristóbal Gatica, está comprometido con no dañar el terreno a costa de su producción. A él le ha tocado ver de cerca el daño que puede causar la industria ganadera en el suelo.

Cuando aparecen grietas en un terreno, es señal de que está dañado. La erosión es natural, pero las prácticas agrícolas pueden intensificarla. Actualmente, casi la mitad –49.1 por ciento– de los suelos chilenos presentan erosión. Para evitarla, en Manada basan su producción en el manejo regenerativo, que concibe el suelo como un sistema vivo, por lo que procuran restaurar las interacciones biológicas entre sus distintos organismos.

Con el objetivo de aprender más sobre la ganadería regenerativa, la Fundación para la Innovación Agrícola (FIA) del Ministerio de Agricultura impulsó el desarrollo de un centro en Pirque, que busca implementar y evaluar técnicas agropecuarias adaptadas a productores de la zona central.

CONTINUA LEYENDO EN LA TERCERA

Caminos de Regeneración: la agrosilvicultura trabaja con la naturaleza y usa los árboles para cultivar alimentos

BRUSELAS, BÉLGICA – En nuestro último episodio de “Caminos de Regeneración”, exploramos las raíces de la agrosilvicultura y cómo la agricultura industrial ha dejado de lado las antiguas prácticas agrícolas que producen alimentos saludables al mismo tiempo que cuidan el medio ambiente.

Cuando se trata de agricultura, el viejo dicho “la naturaleza es sabia” es totalmente cierto. Trabajar con la naturaleza en lugar de contra ella es una mentalidad que se remonta a principios de la historia de la humanidad, cuando los campesinos dependían del conocimiento y las tradiciones ancestrales para cultivar alimentos.

Nuestro nuevo episodio, “La agrosilvicultura en la actualidad, parte 1: Una breve historia de la agrosilvicultura”, presenta a Patrick Worms, asesor de política científica del Centro Mundial de Agrosilvicultura con sede en Nairobi y presidente de la Federación Agroforestal Europea.

La agrosilvicultura es una forma de agricultura que combina árboles y arbustos con cultivos alimentarios. Da prioridad a la naturaleza y es una de las formas más antiguas de agricultura. La agrosilvicultura considera que el paisaje natural y la integración de los árboles crean un sistema alimentario con beneficios ambientales, sociales y económicos.

Worms ha pasado décadas investigando y desarrollando sistemas agroforestales en todo el mundo. Es uno de los pocos cabilderos políticos y científicos en temas agroforestales en Bruselas y en otras partes de Europa, donde aporta su experiencia en políticas agrícolas.

Agrosilvicultura: el arte de leer un paisaje para mejorar la productividad agrícola

En una entrevista de Zoom con Regeneration International, Worms explicó cómo la introducción de tecnología moderna en el sector agrícola (pesticidas, fertilizantes sintéticos y equipos agrícolas como tractores, arados y cosechadoras) ha hecho que miles de años de evolución agrícola utilizando árboles hayan llegado a un camino sin salida.

El lado positivo es que a medida que las limitaciones de la agricultura industrializada se vuelven más obvias, estamos redescubriendo la sabiduría del antiguo conocimiento agroforestal, dijo Worms.

En el Centro Mundial de Agrosilvicultura, Worms está trabajando en nuevas formas de implementar sistemas agroforestales en todo el mundo y en regiones que se enfrentan a la escasez de alimentos y a los impactos del cambio climático y la desertificación.

“Si observas esos paisajes, son paisajes agroforestales típicos con jardines de múltiples estratos, plantas anuales en el suelo, enredaderas que trepan por los árboles, arbustos de tamaño medio y árboles más altos con animales y cultivos en el medio”.

La agrosilvicultura, una práctica tan antigua como la historia humana.

Los ejemplos de sistemas agroforestales se encuentran en todo el mundo y han estado presentes a  lo largo de la historia de la humanidad. Desde la domesticación del árbol del cacao en América Central y del Sur, hasta la higuera, que se originó en el suroeste de Asia y es una de las frutas más antiguas consumidas por los humanos, los sistemas agroforestales han producido algunos de los alimentos más populares de la actualidad.

Los primeros humanos que practicaban la agrosilvicultura desarrollaron sistemas agrícolas exitosos no porque tuvieran científicos con batas blancas de laboratorio, sino porque tenían un proceso constante de prueba y error. Las prácticas que eran exitosas eran adoptadas y transmitidas, y las que salían mal eran abandonadas, dijo Worms, y agregó:

“Pero la modernidad ha acabado todo eso. El conocimiento que nuestros antepasados adquirieron minuciosamente por milenios ​​ha desaparecido por completo”.

Reemplazar las prácticas agrícolas basadas en miles de años de conocimiento ancestral por una agricultura industrial dependiente de productos químicos ha degradado el suelo, eliminado la biodiversidad, despojado los alimentos de los nutrientes esenciales y esclavizado y endeudado a los campesinos con las principales corporaciones agrícolas.

La buena noticia es que el retorno a la agrosilvicultura y la ampliación de los sistemas de agricultura orgánica y regenerativa pueden revertir el daño causado por la agricultura industrial.

Los sistemas alimentarios y agrícolas que trabajan en armonía con en el medio ambiente absorben y almacenan carbono en el suelo y gracias a eso pueden mejorar el sustento social y económico de los campesinos, reconstruir la salud del suelo, promover la biodiversidad y las cuencas hidrográficas limpias, producir alimentos saludables y mitigar el cambio climático.

 Esto es precisamente lo que describió Food Tank: The Think Tank For Food de manera tan elocuente en octubre de este año:

“Si queremos proteger nuestro planeta y tener alimentos saludables en nuestra mesa, la agroecología es el camino a seguir”.

Para obtener más información sobre la agrosilvicultura y algunas de las mejores prácticas que se implementan en la actualidad, permanezca atento al próximo episodio, “La agrosilvicultura en la actualidad, parte 2: Las buenas prácticas de hoy”, en esta serie de dos partes.

 

Oliver Gardiner representa a Regeneration International en Europa y Asia. Julie Wilson, asociada de comunicaciones de la Asociación de Consumidores Orgánicos (OCA), contribuyó a este artículo. Para mantenerse al día con noticias y eventos, regístrese aquí para recibir el boletín de Regeneración Internacional.

 

Want a More Sustainable Food System? Focus on Better Dirt

Four years ago, Cody Straza went “down the YouTube rabbit hole” of regenerative agriculture. “And I haven’t come up since,” he cracks.

For the past decade, Straza and his wife Allison Squires have been the owners of Upland Organics, a 2,000-acre farm near Wood Mountain, Sask. While their approach to farming was guided by organic principles from the start – Straza and Squires met at the University of Saskatchewan where he was studying agricultural and bioresource engineering and she was completing her PhD in toxicology – they transitioned to a regenerative agriculture farming model in 2016. (Squires went down the rabbit hole soon after her husband did.)

Regenerative agriculture is a system of principles designed to boost the farm ecosystem through the enhancement of soil health. This system is rooted in five pillars – better water management, low or no tillage (mechanical agitation of the soil), crop diversity, year-round cover crops and livestock integration.

CONTINUE READING ON THE GLOBE AND MAIL

Trails of Regeneration: Agroforestry Works With Nature, Uses Trees to Grow Food

BRUSSELS, BELGIUM – In our latest “Trails of Regeneration” episode, we explore the roots of agroforestry and how industrial agriculture has pushed aside ancient farming practices that produce healthy food while also caring for the environment. 

The old saying “nature knows best” rings true when it comes to agriculture. Working with nature instead of against it is a mindset that dates back early in human history when farmers relied on ancestral knowledge and traditions to grow food. 

Our new episode, “Agroforestry Today Part 1: A Brief History of Agroforestry,” features Patrick Worms, senior science policy advisor for the Nairobi-based World Agroforestry Centre and president of the European Agroforestry Federation.

Agroforestry is a form of agriculture that incorporates trees and shrubs with food crops. It puts nature first and is one of the most ancient forms of farming. Agroforestry considers the natural landscape and the integration of trees to create a food system with environmental, social and economic benefits. 

Worms has spent decades researching and developing agroforestry systems around the world. He is one of a handful of political and scientific agroforestry lobbyists in Brussels and elsewhere in Europe where he lends his expertise on agricultural policies.

Agroforestry: The art of reading a landscape to enhance agricultural productivity 

In a Zoom interview with Regeneration International, Worms explained how the introduction of modern technology in the agricultural sectorthink pesticides, synthetic fertilizers and farming equipment such as tractors, plows and combineshas in many ways brought thousands of years of agricultural evolution using trees to a standstill. 

The bright side is that as the limitations of industrialized agriculture become more obvious, we are rediscovering the wisdom of ancient agroforestry knowledge, said Worms. 

At the World Agroforestry Centre, Worms is working on new ways to implement agroforestry systems worldwide and in regions faced with food shortages and the impacts of climate change and desertification. 

Trees have proven to be an important resource through human history. Trees provide food and fuel, help fertilize soils and protect farmland from pests, diseases and extreme weather conditions. 

Combining trees, shrubs and grasses with food crops and livestock creates a functional ecosystem that’s efficient at producing a variety of healthy foods. In the featured video, Worms explains that natural landscapes where fruits and grasses grow together almost always have trees in them. 

Farmers learned early on the benefits of growing food alongside trees

Farmers who saved and planted seeds harvest after harvest learned early on that trees are beneficial when grown with certain food crops, said Worms. A good example of this exists in the high plateaus of Papua New Guinea, an island researchers believe is where the banana was first domesticated

Humans first settled in Papua New Guinea about 50,000 to 60,000 years ago. Despite the cool-to-cold climate, agriculture was in full swing in the region’s highlands by 7,000 B.C. The environment, dotted with swamps and rich in flora and fauna, helped make it one of the few areas of original plant domestication in the world. 

Early foods systems such as those in Papua New Guinea are prime examples of ancient agroforestry, said Worms, adding: 

“If you look at those landscapes, they are typical agroforestry landscapes with multi-strata gardens, annuals on the ground, vines climbing along with trees, mid-level shrubs and taller trees with animals and crops in between.”

Agroforestry is practiced throughout ancient human history

Examples of agroforestry systems span the globe throughout human history. From the domestication of the cacao tree in Central and Latin America, to the fig treewhich originated in southwest Asia and is one of the oldest fruits eaten by humansagroforestry systems have produced some of today’s most popular foods.

Early humans that practiced agroforestry developed successful farming systems not because they had scientists in white lab coats, but because they had a constant process of trial and error. The good things were adopted and passed on, and the bad things were abandoned, said Worms, adding: 

“But modernity has swept that away. Knowledge that was painstakingly gained by millennia of our ancestors has completely disappeared.”

Replacing farming practices based on thousands of years of ancestral knowledge with chemical-dependent industrial agriculture has degraded the soil, eliminated biodiversity, stripped food of essential nutrients and enslaved and indebted farmers to major agriculture corporations. 

The good news is that a return to agroforestry and the scaling up of organic and regenerative agriculture systems can reverse the damage caused by industrial agriculture. 

Environmentally focused food and farming systems can improve the social and economic livelihood of farmers, rebuild soil health, promote biodiversity and clean watersheds, produce healthy food and mitigate climate change by drawing down and storing carbon in the soil. 

As Food Tank: The Think Tank For Food wrote so eloquently in October: 

“If we are going to protect our planet and keep healthy food on our table, agroecology is the way forward.”

To learn more about agroforestry and some of today’s best practices, stay tuned for the next episode, “Agroforestry Today P 2: Today’s Good Practices,” in this two-part series.

Oliver Gardiner represents Regeneration International in Europe and Asia. Julie Wilson, communications associate for the Organic Consumers Association (OCA), contributed to this article.

To keep up with news and events, sign up here for the Regeneration International newsletter.

Los científicos urgen recuperar una naturaleza salvaje para mitigar la crisis climática

Restaurar los ecosistemas dañados por la sobreexplotación humana puede ser una de las maneras más efectivas y baratas para combatir el cambio climático mientras permitiría a la vez dar un gran impulso a las poblaciones de las especies de la vida salvaje.

Si un tercio de las áreas del planeta más degradadas fueran restauradas y esta protección se extendiera a áreas que aún están en buenas condiciones, se podría almacenar el equivalente a la mitad del carbono generado por las emisiones de gases invernadero causadas por el hombre desde la revolución industrial. Estos cambios evitarían el 70% de las extinciones de especies, según una investigación publicado en Nature.

Volver a su estado natural bosques, pastos, matorrales, zonas húmedas y ecosistemas áridos específicos, que fueron en gran parte reemplazados por tierras de cultivo, permitiría absorber 465.000 millones de toneladas de dióxido de carbono y salvaría la mayoría de las especies con base terrestre de mamíferos, anfibios y aves en peligro de extinción.

CONTINUE LEYENDO EN LA VANGUARDIA

What Regenerative Farming Can Do for the Climate

Tropical Storm Isaias downed power lines and trees across the greater New York City area in early August, snapping limbs from the ancient oaks that ring Patty Gentry’s small Long Island farm.

Dead branches were still dangling a month later. But rows of mustard greens were unfurling nearby, and a thicket of green vines reached toward the sun, dotted with tangy orange bulbs.

“These sungold tomatoes were toast,” Gentry said, sounding almost astonished. “But now look at them. They’re coming back. It’s like spring again.”

Over the past four years, Gentry has transformed 2 acres of trash-strewn dirt on Long Island’s southeast coast into a profitable organic farm by betting big on soil. Instead of pumping her crops with pesticides and petrochemical fertilizer, Gentry grows vetch, a hardy pealike plant, and rye to cover the exposed soil between the rows of greens intended for harvest. She layers the soil with specially mined rock dust that replenishes minerals and pulls carbon from the air. And in the spring and summer, she uses a system of crop rotation—shifting around where different crops are planted—so that one plant’s nutrient needs don’t drain the soil. These practices are collectively known as regenerative farming.

Tests of the soil show the organic content is now seven times higher than when she began. The result is produce so flavorful that she can’t keep up with the number of restaurants and home cooks looking to buy shares.

Gentry’s farm is also resilient, one where healthy soil soaks up rainwater like a sponge and replenishes the crops. She barely missed a delivery after the storm.

At a moment when fires and storms are wreaking havoc from coast to coast, mounting research suggests that practicing the soil techniques Gentry uses on a much wider scale could remove climate-changing gases from the atmosphere and provide a vital bulwark in the fight to maintain a habitable planet. They’re part of a mix of solutions experts say are needed to keep global temperatures from surpassing 1.5 degrees Celsius above pre-industrial averages, beyond which projections show catastrophic threats to our coasts, ecosystems, and food and water supplies.

Regenerative practices range from growing trees and reverting croplands to wild prairies, to rotating crops and allowing remnants after harvest to decompose into the ground. The techniques, already popular with small-scale organic growers, are steadily gaining traction among big farms and ranches as the chaotic effects of climate change and financial pressure from agribusiness giants eat away at their businesses.

“This is about covering the soil, feeding the soil and not disrupting it,” said Betsy Taylor, the president at Breakthrough Strategies & Solutions, a consultancy that focuses on regenerative agriculture. “Those are the basic principles.”

Countries such as France are promoting large-scale government programs to encourage farmers to increase the carbon stored in soil. Members of Congress have also proposed legislation to push regenerative farming in the U.S., and several states are designing their own policies. Progressive think tanks call for small shifts in existing U.S. Department of Agriculture programs and beefed-up research funding that could trigger the biggest changes to American farming in almost a century. Nearly every Democratic presidential candidate pitched paying farmers to trap carbon in soil as a key plank of their climate platform, including nominee Joe Biden.

“We should be making farmers the recipients of a climate change plan where they get paid to absorb carbon,” the former vice president said during a CNN town hall this past week.

While the benefits to soil and food nutrition are difficult to dispute, regenerative farming has its critics. They argue that its climate advantages are overhyped or unproven, the product of wishful thinking about a politically palatable solution, and that the focus on regenerative farming risks distracting policymakers from more effective, if less exciting, strategies.

Industrial Agriculture’s Bill Is Coming Due

At the end of World War II, federal farming policy started to transform the breadbasket of the Midwest into vast plains of corn, soybeans, and grains. The same principles of mechanized bulk production that turned the United States into a military powerhouse capable of fending off the Japanese and Nazi empires were applied to farming. Surplus chemicals from weapons manufacturing found new uses eradicating crop-eating insects, and nitrogen plants that once made components for bombs started producing ammonia to feed fields.

Geopolitics only hastened the trend, as widespread Soviet crop failures forced Russian officials to buy grain from overseas and the Nixon administration capitalized on the opportunity. Agriculture Secretary Earl “Rusty” Butz, who served under Richard Nixon and Gerald Ford, directed farmers to “plant fence row to fence row,” and quantity trumped all else. Farmers took out loans to expand operations, turning “get big or get out” into a mantra, as Butz promised that any surplus could be sold overseas.

The damage to farm soil kicked into overdrive as farmers planted the same monoculture crops year after year and added more chemical fertilizers to make up for the sapped minerals and dead microbes. The cumulative effect has been twofold. The U.S. loses top soil at a rate 10 times faster than it’s replenished. And carbon and other gases seep from the plowed, exposed soil into the air, contributing to the emissions rapidly warming the planet and increasing the frequency and severity of destructive droughts and storms.

Less than two weeks after Tropical Storm Isaias made landfall over Gentry’s farm, a powerful storm known as a derecho—or “inland hurricane”—formed in Iowa, some 1,100 miles west. The storm destroyed nearly half the state’s crop rows. “This will ruin us,” one farmer told a local newspaper. Another called it a “catastrophic scenario.”

Losses from extreme weather are only expected to grow in the years ahead. Even if warming is kept within a 2 degrees Celsius warming scenario, the less ambitious goal spelled out in the Paris climate accords, U.S. corn production will likely suffer an 18% hit, according to a 2018 study published in the Proceedings of the National Academy of Sciences.

For many farmers, the federal crop insurance program has been a lifeline in tumultuous times. But it also encourages them to plant in harm’s way by providing incentives to cultivate every inch of land, including marginal acres prone to flooding, and it promotes monocultures by making it difficult for farmers to insure a variety of crops at once. In 2014, the federal Government Accountability Office found that, as a result of the insurance program’s policies, farmers “do not bear the true cost of their risk of loss due to weather-related events, such as drought—which could affect their farming decisions.”

“As farmers, we’re trying to make rational economic decisions in an irrational system,” said Matt Russell, a fifth-generation Iowa farmer who promotes regenerative soil practices. “We have externalized the pollution so the public pays for those costs and nobody in the supply chain pays for it, while at the same time, when I do something good, I can’t externalize the cost at all.”

‘You’ve Got A Win’

Plans to shift federal incentives to favor regenerative farming aim first to loosen big agribusiness’s grip on the industry.

The think tank Data for Progress has proposed overhauling the federal crop insurance program to limit the total acreage eligible for coverage, phase out incentives for single-crop planting and create new tax credits designed specifically for family-owned farms, restricting how much corporate giants could benefit from the subsidized insurance.

With that stick would come a carrot: Under Data for Progress’ plan, Congress would increase the budget for the USDA’s existing conservation programs.

The Conservation Stewardship Program already provides farmers with cash payments of up to $40,000 per year and technological assistance for steps such as assessing which plots of farming and grazing land should be allowed to go natural. With an expanded mandate to sequester carbon dioxide, the program might fund a national assessment to determine which areas are best suited for rewilding or carbon farming and compensate farmers directly to do that.

The program paid out $1.4 billion last year alone. Data for Progress proposed that the USDA significantly increase funding for both the program and research, and provide employees in all its conservation programs with training to understand and help regulate regenerative farming practices.

“There are so many wins in regenerative agriculture,” said Maggie Thomas, a former climate policy adviser to the presidential campaigns of U.S. Sen. Elizabeth Warren (D-Mass.) and Washington Gov. Jay Inslee (D), who serves as political director of the progressive climate group Evergreen Action. “You’ve got a win for farmers. You’ve got a win for soils and the environment. You’ve got a win for better food. There’s no reason not to do it.”

The hopes for such changes are dim under the Trump administration, which spent its first three years sidelining climate science and spurring an exodus of scientists from the USDA as frustration over political appointees’ meddling with research grew. (A five-year proposal the agency released in February did seem to show a growing acceptance of the need to address climate change, offering what InsideClimate News called “hopeful signs.”)

Maryland already pays farmers $45 per acre for fields maintained with cover crops. Montana state officials collaborated with a nonprofit consortium paying ranchers to adopt sustainable grazing practices that increase carbon storage in the soil.

In January, Vermont proposed a plan to incorporate carbon sequestration by farmers into the Regional Greenhouse Gas Initiative, a cap-and-trade scheme that includes most of the Northeast states. In March, Minnesota officials gathered for a summit on using soil to combat climate change. In June, Colorado solicited input for a state-level soil health program aimed at “advancing climate resilience.”

Investors see potential profit in the shift to regenerative agriculture. In January, the Seattle startup Nori was able to raise $1.3 million to fund its platform using blockchain technology to pay farmers to remove carbon from the atmosphere. And Boston-based Indigo Ag, a similar startup, announced in June that it had brought in another $300 million from investors, becoming the world’s highest-valued ag-tech firm at an estimated $3.5 billion.

But some fear these platforms offer dubious benefits, particularly because the credits generated by the farmers’ stored carbon could be bought by industrial giants that would rather offset their own pollution than eliminate it.

“It’s right to be skeptical of these companies,” said Mackenzie Feldman, a fellow at Data for Progress and lead author on its regenerative farming proposal. “It has to be the government doing this, and it can be through mechanisms that already exist, like the Conservation Stewardship Program.”

Are The Benefits Being Oversold?

But not everyone is jumping on the regenerative farming bandwagon. In May, a group of researchers at the World Resources Institute offered a skeptical take, arguing “that the practices grouped as regenerative agriculture can improve soil health and yield some valuable environmental benefits, but are unlikely to achieve large-scale emissions reductions.”

“No-till” farming—a seeding practice that requires growers to inject seeds into fields without disturbing the soil, which became popular with environmentalists several years ago—has had only limited carbon benefits because farmers inevitably plow their fields after a few years, WRI argued, pointing to a 2014 study in the journal Nature Climate Change.

And cover crops can be costly to plant and difficult to propagate in the weeks between a fall harvest and the winter months, WRI said, highlighting the findings of an Iowa State University study. The group also cast doubt over the methods used to account for carbon added to soil.

In June, seven of the world’s leading soil scientists published a response to WRI’s claims, which they said drew too narrow conclusions and failed to see the potential of combining multiple regenerative practices.

WRI researcher Tim Searchinger renewed the debate this past month with his own response to the response, accusing the critics of his critique of relying on misleading information from a 2007 United Nations report to inflate the potential for capturing carbon in soil at large scale.

“The realistic ability to sequester additional carbon in working agricultural soils is limited,” he wrote. “Because what causes carbon to remain in soils is not well understood, further research is needed, and our views may change as new science emerges.”

Rock You In A Hurricane

Some of the latest science sheds light on one aspect of regenerative farming that didn’t factor into the recent debate at all. In July, a major new study published in the journal Nature found that spreading rock dust on soil at maximum scale in the world’s three largest carbon emitters—China, the United States and India—could collectively remove up to 2 billion metric tons of carbon dioxide from the air per year.

The process, known as “enhanced rock weathering,” occurs when minerals in the rock dust react with carbon in rainwater and turn into bicarbonate ions. Those ions are eventually washed into the oceans, where they’re stored indefinitely as rock minerals.

“The more we looked into it, the more it seemed like a no-brainer,” said David Beerling, a soil researcher at the U.K.’s University of Sheffield and the lead author of the study.

That’s a leap Thomas Vanacore took nearly four decades ago. The Vermont farmer and quarryman realized in the 1980s that mineral-rich dust from basalt and shale quarries could replenish nutrients in soil without using synthetic fertilizers, which would appeal to his state’s organic farmers. But as he studied climate change, he also concluded that his product could help pull carbon from the atmosphere.

“You can’t do what modern farming has done for years, where you kill everything and expect to grow life,” Vanacore said, standing before a pile of black shale at a quarry in Shoreham, Vermont. For farmers looking to make the shift to regenerative practices, “rock dust is the jumpstart,” he said.

This month, he delivered his largest shipment to date to an industrial farm supplier in the Canadian province of Saskatchewan. Vanacore said he expects to ship an added 245 rail cars full of rock dust over the northern border in the next 12 months.

His customers swear by the stuff—including Gentry, who started buying bags of his brix-blend basalt when she first started her farm. Without the rock dust, Gentry doubts that her soil would be as fertile as it is today. Her embrace of pioneering techniques is reflected in the name of her plot: Early Girl Farm.

 

Reposted with permission from YES Magazine

‘Regenerative Agriculture and the Soil Carbon Solution’: New Paper Outlines Vision for Climate Action

A white paper out Friday declares that “there is hope right beneath our feet” to address the climate crisis as it touts regenerative agriculture as a “win-win-win” solution to tackling runaway carbon emissions.

“Humans broke the planet with grave agricultural malpractice,” Tom Newmark, chairman of The Carbon Underground and a contributor to the research, said in a statement. “With this white paper, Rodale Institute shows us how regenerative agriculture has the potential to repair that damage and actually reverse some of the threatening impacts of our climate crisis.”

“This is a compelling call to action!” he added.

Released by the Rodale Institute and entitled Regenerative Agriculture and the Soil Carbon Solution (pdf), the white paper discusses how a transformation of current widespread agricultural practices—which now contribute indirectly and directly to the climate crisis—”can be rolled out tomorrow providing multiple benefits beyond climate stabilization.”

The findings are based on Rodale’s own trials, research data, and interviews with experts, and build upon the institute’s 2014 paper Regenerative Organic Agriculture and Climate Change: A Down-to-Earth Solution to Global Warming.

The claim made in the new paper is bold: “Data from farming and grazing studies show the power of exemplary regenerative systems that, if achieved globally, would drawdown more than 100% of current annual CO2 emissions.”

Regenerative agriculture, as the researchers describe, represents “a system of farming principles that rehabilitates the entire ecosystem and enhances natural resources, rather than depleting them.”

In contrast to industrial practices dependent upon monocultures, extensive tillage, pesticides, and synthetic fertilizers, a regenerative approach uses, at minimum, seven practices which aim to boost biodiversity both above and underground and make possible carbon sequestration in soil.

  • Diversifying crop rotations
  • Planting cover crops, green manures, and perennials
  • Retaining crop residues
  • Using natural sources of fertilizer, such as compost
  • Employing highly managed grazing and/or integrating crops and livestock
  • Reducing tillage frequency and depth
  • Eliminating synthetic chemicals

While passers-by may easily spot visual differences above ground between the divergent agricultural approaches, what’s happening below ground is also vital. From the paper:

Contrary to previous thought, it’s not the recalcitrant plant material that persists and creates long-term soil carbon stores, instead it’s the microbes who process this plant matter that are most responsible for soil carbon sequestration. Stable soil carbon is formed mostly by microbial necromass (dead biomass) bonded to minerals (silt and clay) in the soil. Long term carbon storage is dependent on the protection of the microbially-derived carbon from decomposition.

As for claims such as agricultural transformation wouldn’t be able to produce enough food, the paper counters: “Actual yields in well-designed regenerative organic systems, rather than agglomerated averages, have been shown to outcompete conventional yields for almost all food crops including corn, wheat, rice, soybean, and sunflower.”

But that is far from the only benefit. “When compared to conventional industrial agriculture,” the authors write, “regenerative systems improve”:

  • Biodiversity abundance and species richness
  • Soil health, including soil carbon
  • Pesticide impacts on food and ecosystems
  • Total farm outputs
  • Nutrient density of outputs
  • Resilience to climate shocks
  • Provision of ecosystem services
  • Resource use efficiency
  • Job creation and farmworker welfare
  • Farm profitability
  • Rural community revitalization

Rather than framing it as a “wake-up call,” the institute says the paper should be seen as an “invitation to journey in a new direction.”

“It is intended to be both a road map to change and a call to action to follow a new path,” the authors write. “One led by science and blazed by farmers and ranchers across the globe.”

“Together we both sound the alarm and proclaim the regenerative farming solution: It’s time to start our journey with a brighter future for our planet and ourselves as the destination,” the paper states.

Resources accompanying the white paper include a sample letter to members of Congress to urge support for the Agriculture Resilience Act (H.R. 5861), introduced in February by Rep. Chellie Pingree (D-Maine), and a “buyer’s guide to regenerative food” to help decipher food labels and questions to ask suppliers at farmers’ markets.

“A vast amount of data on the carbon sequestration potential of agricultural soils has been published, including from Rodale Institute, and recent findings are starting to reinforce the benefits of regenerative agricultural practices in the fight against the climate crisis,” said Dr. Andrew Smith, COO and chief scientist of Rodale Institute.

Reposted with permission from Common Dreams

La edad del suelo influye mucho menos en un ecosistema que los cambios ambientales

En un comunicado, este organismo científico ha señalado que en este estudio han participado investigadores del Grupo de Enzimología y Biorremediación de Suelos y Aguas del Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC).

Además, la investigación sugiere que este contexto ecológico controla los procesos de fertilidad, acumulación de carbono y producción de plantas a lo largo de millones de años.

Fertilidad del suelo

Manuel Delgado-Baquerizo, coordinador del estudio y director del laboratorio de Biodiversidad y Funcionamiento Ecosistémicos de la Universidad Pablo de Olavide (Sevilla), ha explicado que las zonas áridas siempre tendrán suelos menos fértiles, menor contenido de carbono y menor capacidad para producir alimento que ecosistemas templados o tropicales, independientemente de la edad de los ecosistemas.

De igual manera, los ecosistemas que se forman en suelos arenosos siempre serán menos fértiles que los ecosistemas que se desarrollan sobre suelos volcánicos, independientemente de su edad, ha añadido Delgado-Baquerizo.

CONTINUE LEYENDO EN EFE VERDE

Regenerative Ranching Could Solve Climate Change

A new study from Oregon State University shows regenerative ranching increases adaptability and socioeconomic status while helping to mitigate climate change.   

Climate Reality Project describes regenerative agriculture as a system of farming principles and practices that seeks to rehabilitate and enhance the entire ecosystem of the farm by placing a heavy premium on soil health with attention also paid to water management, fertilizer use, and more.   

According to Regeneration International, this method can help to reverse climate change as it works to rebuild organic matter and restore biodiversity to the soil.   

Regenerative ranching refers to the practices familiar to most of us as organic farming. These changes are brought about by using a dynamic and holistic approach, including organic farming techniques such as cover cropscrop rotationsno till and compost. These practices encourage carbon sequestration, and can dramatically affect the climate in extremely positive ways.   

KEEP READING ON THE CORVALLIS ADVOCATE

Tag Archive for: Soil Health

Nothing Found

Sorry, no posts matched your criteria