Huir del calentamiento global: la nueva gran migración

Publicado: 5 de julio 2018

Autora: Lauren Markham

Publicado por: The New York Times

El año pasado viajé al sur de Guatemala, lugar de origen de uno de los grupos más grandes de inmigrantes indocumentados que han llegado a Estados Unidos en los últimos años. Es muy claro por qué la gente se va: Guatemala es un país plagado de conflictos políticos, un racismo endémico en contra de los indígenas, pobreza y cada vez más violencia a manos de pandillas.

Sin embargo, hay otra dimensión menos conocida de esta migración. La sequía y las temperaturas en aumento en Guatemala están haciendo que sea más difícil para la gente ganar lo suficiente para vivir o incluso sobrevivir, lo cual empeora la situación política de por sí frágil para los 16,6 millones de personas que viven en ese país.

En la aldea de Jumaytepeque, en la región del Corredor Seco de América Central, un grupo de campesinos me llevó a ver sus cultivos de café. La mayor parte de los ingresos de la comunidad provenían del grano, pero las ganancias se han diezmado debido a una plaga conocida como roya del cafeto. Las plagas como esta no son causadas necesariamente por el cambio climático, pero este sí las exacerba, y la roya ahora está infectando plantas en altitudes cada vez mayores conforme las zonas más elevadas se han vuelto más cálidas. Lo que es peor, el estrés provocado por la sequía ha hecho que esas plantas sean más vulnerables a la plaga.

LEER MÁS AQUÍ

Estudio de recepción de carbono de manglares

Publicado: 04 de julio 2018

Publicado por: La Verdad 

Determinan las variables ambientales en un estudio que influyen en la recepción de carbono de los manglares del mundo.

Los manglares pueden acumular hasta cinco veces más carbono que los bosques terrestres y gracias a esto se ha reconocido su importante rol en la mitigación al cambio climático. Sin embargo, hasta ahora no existía certeza de cómo el ambiente puede influir a escala global en la dinámica de acumulación de carbono de estos ecosistemas.

En este sentido, un reciente estudio analizó esa relación para poder explicar mejor el crecimiento y la estabilidad de los manglares, lo cual ayudará a determinar el éxito de estrategias de mitigación al cambio climático que se centren en secuestrar carbono atmosférico en bosques y suelos.

El estudio fue desarrollado por casi una docena de investigadores de todo el mundo, entre ellos, Miguel Cifuentes Jara, del Programa de Bosques, Biodiversidad y Cambio Climático del CATIE (Centro Agronómico Tropical de Investigación y Enseñanza) (Nicaragua).

LEER MÁS AQUÍ

Suelo, recurso clave para alcanzar la sustentabilidad

Publicado: 08 de julio 2018

Publicado por: El Dictamen 

La gran biodiversidad de México llega hasta los suelos. Según la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), México posee 87% de la diversidad de suelos que existen en la Tierra, esto da como resultado  a diversos factores: una compleja topografía de origen volcánico, cuatro de los cinco grandes tipos de climas del mundo y una enorme variedad de rocas. Sin embargo, tan sólo en un 26% de este suelo se realizan actividades productivas sustentables sin degradación aparente. 

El suelo es un recurso finito y no renovable por lo tanto su desgaste continuo es irrevocable, pero su degradación si es propicio evitar. La importancia del suelo radica en el hecho de la vida que da lugar en él y gracias a él, esto debido a los diferentes procesos naturales que regula en todos los seres vivos. El suelo proporciona nutrientes, agua y minerales para las plantas y los árboles, almacena carbono y es el hogar de miles de millones de insectos y microorganismos.

 

LEER MÁS AQUÍ

Restoring Degraded Landscapes in Niger with Farmer-Managed Natural Regeneration

Author: Cathy Watson | Published: June 29, 2018

Farmer-managed natural regeneration (FMNR) of trees made headlines several years ago when 5 million hectares of Niger were found to have re-greened via the practice. FMNR is the encouragement of regeneration (and then management) of trees and shrubs that sprout from stumps, roots, and seeds found in degraded soils, such as those currently under agricultural production. Once established in farm fields, these new woody plants improve soil fertility and moisture for crops planted in combination with them, in a system known as agroforestry.

The news from Niger provided hope that a low-tech and low-cost approach could succeed after many years of failed tree planting efforts. Researchers crowded in and found that FMNR increased grain yields by 30%, boosted incomes, and was climate smart.

But a decade later, two scientists from Burkina Faso associated with the World Agroforestry Centre (ICRAF) are still drilling down into the data.

Dr. Jules Bayala is Chief Scientist for the Sahel and Dr Patrice Sawadogo is a senior scientist. Cathy Watson, Chief of Programme Development at ICRAF, interviewed them for Mongabay about trees, soil carbon, and productivity to discuss whether FMNR is the fastest way to restore degraded landscapes, and if it has utility beyond drylands.

Cathy Watson: Why are you studying FMNR?

Patrice Savadogo: Since childhood I’d seen farmers regenerate trees. Then, when I grew up, experts claimed that FMNR is climate smart. Yet in the literature, we didn’t have sound evidence. I wanted to build scientific knowledge.

A farmer removes side stems from a Guiera senegalensis, the first step in encouraging the strong central stem to take advantage of the root system. Photo courtesy of ICRAF/P. Savadogo

 

Jules Bayala: FMNR had been practiced in Niger for quite some years. Yet nobody had assessed it systematically. We knew it was good, but by how much? Our idea was to be neutral.

Cathy Watson: You wanted more than positive stories. What else?

Patrice Savadogo: Well, we already knew that the most important thing that trees can do in the Sahel to sustain soil productivity is to improve soil carbon because that improves soil structure. The soil stays moist longer and that increases the ability of cereals to take up nutrients. So, we wanted to look at FMNR and carbon sequestration in trees and carbon accumulation in the soil.

Cathy Watson: And how have you been doing this?

Jules Bayala: Earlier studies used classes of adopters – people who adopted FMNR 15, 10, five years ago and those who had not adopted. So, we divided 160 farmers into those classes and sampled soil from the trunks of trees to the open area where we expected no tree effect.

Patrice Savadogo: We calculated above ground carbon by inventorying the species and numbers of trees and measuring the diameter of the stem and crown. To see what is going on below ground, we sampled soil to one meter deep.

At the World Agroforestry Centre, Dr Jules Bayala is Principal Scientist in the Sahel. Dr Patrice Savadogo is its Dryland Agroforestry System Scientist. Both from Burkina Faso and grew up watching their fathers work with trees. Image courtesy of ICRAF

 

Cathy Watson: What did you find?

Jules Bayala: If we look at the pattern of carbon, we see a decreasing amount going from tree trunk to the open area. It shows clearly that trees contribute to soil carbon. We can say definitively that FMNR replenishes carbon in soil.

Patrice Savadogo: Also important was that the more the soil is sandy, the bigger the effect of carbon addition. That is very critical because most soil in the Sahel is sandy. Generally, for carbon, FMNR is very good. We’ve measured other elements but, for the soil in the Sahel, carbon is key. You can bring in nitrogen. It is much more difficult to bring in carbon.

Cathy Watson: What do you mean by above and below ground carbon, and how do they relate to trees?

Jules Bayala: Carbon comes through photosynthesis. Photosynthesis takes carbon from the atmosphere and accumulates it as biomass. This biomass is recycled in the soil through leaf litter and root decay. In the soil’s top layer, carbon comes from leaves and animal droppings. Deeper down, it comes from fine root hairs that break down. By far the greatest amount of carbon in the soil comes from these roots for the simple reason that leaves get blown away and you have bush fires. What enters the soil from leaves is very little compared to what stays in the soil layer. Roots behave like leaves. The period you have the maximum leaves, you have a corresponding maximum of fine root hairs. When leaves decay, roots decay too.

Cathy Watson: And the relationship between FMNR, carbon and crop production?

Patrice Savadogo: Very strong. In fact, we believe that without FMNR, soil will have a very low yield or not produce any crop. Because the main problem with soil in the Sahel is the low carbon. We found that on farms where you have FMNR, soil carbon is better, and it relates to the presence of trees. Where you find a very limited number of trees, you find low production of cereals – maybe 200 kg/ha. As tree density increases, yield reaches 300 kg/ha. The most we found was 500 kg, usually where FMNR had been for quite some time. That doubling of yield is due to trees.

A field of millet in Mopti, Mali, already showing benefits from newly preserved individuals of Combretum glutinosum that a farmer is assisting to resprout from stumps. This is a fast-growing drought-resistant shrub common in the Sahel where rainfall is 200-700 mm per year. Photo courtesy of ICRAF/P. Savadogo

Cathy Watson: What about other benefits from FMNR?

Patrice Savadogo: Farms with no trees or a very limited number are more fragile when there is a shock. When you have a drought spell, the crops suffer more than in places with more trees. Crops that grow next to trees perform better than those further away because of the soil carbon but also the microclimate around the tree. You see the millet plant being taller with a bigger head of grain.

Cathy Watson: How does FMNR work? Is there a particular sequence?

Jules Bayala: FMNR is when farmers encourage naturally-occurring trees. In the 1970s in the Sahel, trees were top killed by a period of aridity and then cut for firewood. But the roots kept living in an underground forest. Farmers prune the stems from the living stumps to encourage the strongest ones to shoot up into trees. There is also germination of seeds from the bank of seed in the soil. But about 95% of the trees come from stumps.

Patrice Savadogo: The younger the farm is in its practice of FMNR, the less the tree diversity. Regeneration of those stumps and the germination of existing seed gives you trees. Those trees attract birds or mammals that bring in more seed, and you start to see new species and more diversity. In Niger, you start with Guiera senegalensis. The farmer will say, “This species was there when I started.” Then species like Acacia seberiana and Bosia sengalensis appear, and Balanitis aegyptiaca is brought in by camels in their droppings.

Cathy Watson: How many trees can a farmer achieve?

Jules Bayala: In the beginning they have few. They select and nurture them. Livestock are roaming around. You have to protect them until they reach a certain stage. It’s long. But the density can reach more than 200 stems per acre. Then farmers reach a point where they must reduce them. They get a lot of firewood that generates substantial income in countries like Niger where the fallows, bush and forest are gone.

Bayala showing a newly regenerated Faidherbia albida in a cotton field in Southern Burkina Faso. Besides fixing nitrogen, this species sheds its leaves during the cropping season thus competing less with annual crops for light. During the dry season, it puts out leaves, providing protein rich forage to livestock during this critical period of quality feed shortage. Image courtesy of ICRAF

 

Cathy Watson: Is it best to have many species or fine to have just Guiera, for instance?

Patrice Savadogo: Different species is best. We looked at the nitrogen-fixing trees and non-nitrogen fixers that farmers preserve. A farm with five to eight species, of which one to two are nitrogen fixers, will have more benefits for its soil than if you only have Guiera and Piliostigma, which don’t fix nitrogen.

Cathy Watson: Is FMNR better than planting trees?

Jules Bayala: It’s much easier. “Better” depends on what you want. If you are targeting soil restoration and wood energy, FMNR is far better. If you are targeting fruit trees and the seed for fruit trees is not in the soil, you will not get them. In the first years of FMNR, the farmer can only work from the stocks and seeds he has.

Cathy Watson: Are there limits to FMNR?

Patrice Savadogo: Yes, we cannot regreen only with FMNR. We must combine it with tree planting because if the farmer does not have rootstock, what do you regenerate? We also need to improve soil moisture because even with FMNR, if you don’t have good soil moisture, trees will not develop well. Zai pits, stone lines, and half-moon techniques hold water.

Jules Bayala: I agree. In this very harsh climate where you have eight months of no rain, you need those water conservation structures. They catch a seed as rain washes it along, and the space around them is a niche with higher humidity which helps the seed survive.

Cathy Watson: Is the case closed? FMNR is good?

Patrice Savadogo: No, we need to know more to recommend the optimum density and diversity of trees to optimize crop production.

Jules Bayala: It is not closed. We need permanent plots where you go back frequently and do the same measurements and get solid data showing the trend with time.

Cathy Watson: What about the farmers?

Patrice Savadogo: In Niger, farmers now preserve trees and are very discerning. They can say, “We don’t want Acacia. The thorns puncture our bike tires.” But they preserve Balanitis despite its thorns because it is big, the leaves are sauce and fodder, and the seeds give oil. Farmers know a lot. They regenerate trees by feeding seed to livestock – some germinates better if it goes through the gut. But we need still more uptake of FMNR in Niger and across the Sahel.

This feature is part of an ongoing series about the global implementation of agroforestry, view all articles in the series here.

Reposted with permission from Mongabay.

Soil Farmers: How A Renewed Focus On The Land Is Building More Resilient Farms

Author: Brian Kaufenberg | Published: June 26, 2018

Peter Allen wants to bury a fence.

Tucked within the rolling landscape of the driftless region, on a farm outside of Viola, Wisconsin, a barbed wire fence runs along the spine of a ridge separating a strip of pasture from the valley below. The noticeable three-foot drop between the fence and the field is the result of years of soil washing away while the field was being used as conventional cropland.

“When we got here, this soil was in really bad shape; it hardly grew anything and there was no topsoil left, it was all just sand subsoil,” Peter Allen recalls in a January 2018 episode of the television show “Outdoor Wisconsin.” “So we immediately brought the animals in, […] planted about 30 different species of native prairie grasses and flowers and then a bunch of trees in rows, and then we ran chickens here behind them. And now, just two years later, this is some of the best forage we have on the farm, right where we ran the chickens through.”

As Allen’s animals—cattle, hogs, sheep, and chickens—graze the forage, they return nutrients and organic matter to the land, slowly rebuilding what’s been lost—adding between a quarter of an inch to an inch of soil per year, he says, and slowly restoring the savannah ecosystem once native to the area, a mix of trees and prairie. The livestock are key to this process, providing the cornerstone to a farming system that now yields perennial fruits and nuts, annual crops like corn, and pastured beef, pork, and chicken.

KEEP READING ON THE GROWLER

Weaving Success Through Organic Cotton

In India, there is an urgent need for a shift towards ecologically and financially sustainable cotton

Author: Anita Chester | Published: June 25, 2018

India is the largest producer of cotton and the crop is of significant importance to the economy. Closely woven into the cotton story is the fate of over 6 million small and marginal farmers who plant this crop annually.

However, today, we have reached a point of inflection. The so-called successes of past decades heralded by the hasty adoption of transgenic Bt technology are being eclipsed by the recurrence of pest attacks, worsened by unsustainable land and water use. The growing resistance to pests, such as the pink bollworm, and an alarming rise of secondary pests, suggests that there has been an increase of pesticide use.

Other factors like erratic rainfall, poor extension services, dubious seed quality and lack of credit at reasonable rates, aggravate and worsen the situation for farmers who are not able to cover the increasing costs of production. Poor returns and debt cycles are thus driving cotton farmers to despair, and at times, death.

KEEP READING ON THE HINDU

To Realize Land’s True Value, We Need to Invest In It Wisely

Authors: Lulu Zhang and Kai Schwärzel | Published: June 19, 2018

It takes 200-400 years to form one centimeter of soil, while the estimated rate of soil erosion is 100 times greater than soil formation. Where erosion is prevalent, the rate of soil loss reaches 4 mm per year (FAO 2015); 70% of drylands suffer from land degradation in varying degrees (Gibbs and Salmon 2015). While global population grows rapidly, land is finite in quantity.

With an annual financial loss of US$400 billion due to soil erosion from arable lands, as estimated by the FAO-led Global Soil Partnership, investing in sustainable land management and practices such as restoring degraded land can recover soil health and enhance soil functions and land productivity to provide critical ecological and economic benefits for human needs. Goal 15 of the UN Sustainable Development Goals (SDGs) explicitly outlines the international community’s resolve to halt and reverse land degradation.

KEEP READING ON IISD

Científicos descubren la causa del primer calentamiento global y la primera extinción en la Tierra

Publicado: 3 de julio 2018

Publicado por: RT

Un equipo de científicos de universidades belgas y británicas crearon un modelo matemático que ha vinculado la aparición de los primeros animales con el cambio climático ocurrido hace centenares de millones de años, que creó la primera extinción masiva en la Tierra, informa la página web de la Universidad de Leeds.

Cuando los primeros animales evolucionaron en el mar hace unos 520-540 millones de años y descompusieron el material orgánico marino, esto hizo cambiar la atmósfera, provocando el evento de calentamiento global, señala la investigación, publicada en la revista Nature Communications.

En los cien millones de años posteriores, estos animales sufrieron varias crisis de extinción masiva causadas por caídas de los niveles de oxígeno y subidas del dióxido de carbono y de las temperaturas.

Mecanismo del proceso

“Al igual que los gusanos en un jardín, las pequeñas criaturas del fondo del mar alteran, mezclan y reciclan el material orgánico muerto, un proceso conocido como bioturbación”, explicó el climatólogo Tim Lenton, de la Universidad de Exeter.

LEER MÁS AQUÍ

Cuando las entrañas de la Tierra dejaron de arder y dieron… fruta

Publicado: 28 de junio 2018

Nombre de la autora: Lola Hierro

Publicado por: El País

Cien pares de ojos se posan sobre Emmy Shamiemah. Se dispone a pronunciar su primera conferencia en tierras extranjeras, pero parece serena. Observa el tendido desde el escenario, sonríe en silencio; en realidad, ya ha hecho esto muchas veces. Su impoluta presencia —manicura nacarada, velo de seda color salmón que cubre su cabello, (como ordena la fe musulmana que profesa) y un elegante broche dorado con perlas del tamaño de canicas— reafirma la sensación de seguridad que emana. Shamiemah está en el Oslo Tropical Forest Forum, un evento bianual organizado por el Gobierno noruego en el que durante dos días se analiza el estado de los bosques del planeta, tan importantes en la lucha contra el cambio climático porque retienen dióxido de carbono, uno de los principales causantes del calentamiento global.

Shamiemah ha viajado desde Indonesia, un país con uno de los ecosistemas más ricos del planeta pero que también es el quinto emisor mundial de gases de efecto invernadero y sufre una de las mayores tasas de deforestación del planeta: entre 2001 y 2017 ha perdido 24,4 millones de hectáreas, el 12% de superficie forestal, según los últimos datos de Global Forest Watch. Esto se debe, fundamentalmente, a la quema de la selva. Ya sea por parte de la industria papelera o de las de aceite de palma y de caucho que luego cultivan en ellas para producir elementos de alimentación, cosmética y agrocombustibles consumidos en todo el mundo y, especialmente, en los países desarrollados.

LEER MÁS AQUÍ

Determinan las variables ambientales que influyen en el secuestro de carbono de los manglares del mundo

Publicado: 27 de junio 2018

Publicado por: dicyt

CATIE/DICYT Los manglares pueden acumular hasta cinco veces más carbono que los bosques terrestres y gracias a esto se ha reconocido su importante rol en la mitigación al cambio climático. Sin embargo, hasta ahora no existía certeza de cómo el ambiente puede influir a escala global en la dinámica de acumulación de carbono de estos ecosistemas. En este sentido, un reciente estudio analizó esa relación para poder explicar mejor el crecimiento y la estabilidad de los manglares, lo cual ayudará a determinar el éxito de estrategias de mitigación al cambio climático que se centren en secuestrar carbono atmosférico en bosques y suelos.

 

El estudio fue desarrollado de forma colaborativa por casi una docena de investigadores de todo el mundo, entre ellos, Miguel Cifuentes Jara, del Programa de Bosques, Biodiversidad y Cambio Climático del CATIE (Centro Agronómico Tropical de Investigación y Enseñanza).

LEER MÁS AQUÍ