Investors Say Agroforestry Isn’t Just Climate Friendly — It’s Also Profitable

In the latter part of 2016, Ethan Steinberg and two of his friends planned a driving tour across the U.S. to interview farmers. Their goal was to solve a riddle that had been bothering each of them for some time. Why was it, they wondered, that American agriculture basically ignored trees?

This was no esoteric inquiry. According to a growing body of scientific research, incorporating trees into farmland benefits everything from soil health to crop production to the climate. Steinberg and his friends, Jeremy Kaufman and Harrison Greene, also suspected it might yield something else: money.

“We had noticed there was a lot of discussion and movement of capital into holistic grazing, no till, cover cropping,” Steinberg recalls, referencing some of the land- and climate-friendly agricultural practices that have been garnering environmental and business attention recently. “We thought, what about trees? That’s when a lightbulb went off.”

The trio created Propagate Ventures, a company that now offers farmers software-based economic analysis, on-the-ground project management, and investor financing to help add trees and tree crops to agricultural models. One of Propagate’s key goals, Steinberg explained, was to get capital from interested investors to the farmers who need it — something he saw as a longtime barrier to this sort of tree-based agriculture.

Propagate quickly started attracting attention. Over the past two years, the group, based in New York and Colorado has expanded into eight states, primarily in the Northeast and Mid-Atlantic, and is now working with 20 different farms. Last month, it announced that it had received $1.5 million in seed funding from Boston-based Neglected Climate Opportunities, a wholly owned subsidiary of the Jeremy and Hannelore Grantham Environmental Trust.

A Propagate Ventures agroforestry project in Hudson, NY, planted in April 2020. Image courtesy of Propagate Ventures

“My hope is that they can help farmers diversify their production systems and sequester carbon,” says Eric Smith, investment officer for the trust. “In a perfect world, we’d have 10 to 20 percent of U.S. land production in agroforestry.”

For the past few years, private sector interest in “sustainable” and “climate-friendly” efforts has skyrocketed. Haim Israel, Bank of America’s head of thematic investment, suggested at the World Economic Forum earlier this year that the climate solutions market could double from $1 trillion today to $2 trillion by 2025. Flows to sustainable funds in the U.S. have been increasing dramatically, setting records even amid the COVID-19 pandemic, according to the financial services firm Morningstar.

And while agriculture investment is only a small subset of these numbers, there are signs that investments in “regenerative agriculture,” practices that improve rather degrade than the earth, are also increasing rapidly. In a 2019 report, the Croatan Institute, a research institute based in Durham, North Carolina, found some $47.5 billion worth of investment assets in the U.S. with regenerative agriculture criteria.

“The capital landscape in the U.S. and globally is really shifting,” says David LeZaks, senior fellow at the Croatan Institute. “People are beginning to ask more questions about how their money is working for them as it relates to financial returns, or how it might be working against them in the creation of extractive economies, climate change or labor issues.”

Agroforestry, the ancient practice of incorporating trees into farming, is just one subset of regenerative agriculture, which itself is a subset of the much larger “ESG,” or Environmental, Social and Governance, investment world. But according to Smith and Steinberg, along with a small but growing number of financiers, entrepreneurs and company executives, it is one particularly ripe for investment.

Although relatively rare in the U.S., agroforestry is a widespread agricultural practice across the globe. Project Drawdown, a climate change mitigation think tank that ranks climate solutions, estimates that some 650 million hectares (1.6 billion acres) of land are currently in agroforestry systems; other groups put the number even higher. And the estimates for returns on those systems are also significant, according to proponents.

Vulcan Farm in Illinois combines intensive perennial polyculture, windbreaks, alley cropping, and silvopasture, and also features an innovative long-term lease model that provides options to non-operator landholders and land access for agroforestry farmers. Photo courtesy of Savanna Institute.

Ernst Götsch, a leader in the regenerative agriculture world, estimates that agroforestry systems can create eight times more profit than conventional agriculture. Harry Assenmacher, founder of the German company Forest Finance, which connects investors to sustainable forestry and agroforestry projects, said in a 2019 interview that he expects between 4% and 7% return on investments at least; his company had already paid out $7.5 million in gains to investors, with more income expected to be generated later.

This has led to a wide variety of for-profit interest in agroforestry. There are small startups, such as Propagate, and small farmers, such as Martin Anderton and Jono Neiger, who raise chickens alongside new chestnut trees on a swath of land in western Massachusetts. In Mexico, Ronnie Cummins, co-founder and international director of the Organic Consumers Association, is courting investors for funds to support a new agave agroforestry project. Small coffee companies, such as Dean’s Beans, are using the farming method, as are larger farms, such as former U.S. vice president Al Gore’s Caney Fork Farms. Some of the largest chocolate companies in the world are investing in agroforestry.

“We are indeed seeing a growing interest from the private sector,” says Dietmar Stoian, lead scientist for value chains, private sector engagement and investments with the research group World Agroforestry, also known by the acronym ICRAF. “And for some of them, the idea of agroforestry is quite new.”

Part of this, he and others say, is growing awareness about agroforestry’s climate benefits.

Gains for the climate, too

According to Project Drawdown, agroforestry practices are some of the best natural methods to pull carbon out of the air. The group ranked silvopasture, a method that incorporates trees and livestock together, as the ninth most impactful climate change solution in the world, above rooftop solar power, electric vehicles and geothermal energy.

If farmers increased silvopasture acreage from approximately 550 million hectares today to about 770 million hectares by 2050 (1.36 billion acres to 1.9 billion acres), Drawdown estimated carbon dioxide emissions could be reduced over those 30 years by up to 42 gigatons — more than enough to offset all of the carbon dioxide emitted by humans globally in 2015, according to NOAA — and could return $206 billion to $273 billion on investment.

Part of the reason that agroforestry practices are so climate friendly (systems without livestock, i.e. ‘normal’ agroforestry like shade grown coffee, for example, are also estimated by Drawdown to return well on investment, while sequestering 4.45 tons of carbon per hectare per year) is because of what they replace.

Photo of silvopasture system in Georgia by Mack Evans. Image via U.S. National Agroforestry Center.

Traditional livestock farming, for instance, is carbon intensive. Trees are cut down for pasture, fossil fuels are used as fertilizer for feed, and that feed is transported across borders, and sometimes the world, using even more fossil fuels.

Livestock raised in concentrated animal feeding operations (CAFOs), produce more methane than cows that graze on grass. A silvopasture system, on the other hand, involves planting trees in pastures — or at least not cutting them down. Farmers rotate livestock from place to place, allowing soil to hold onto more carbon.

There are similar benefits to other types of agroforestry practices. Forest farming, for instance, involves growing a variety of crops under a forest canopy — a process that can improve biodiversity and soil quality, and also support the root systems and carbon sequestration potential of farms.

A changing debate

Etelle Higonnet, senior campaign director at campaign group Mighty Earth, says a growing number of chocolate companies have expressed interest in incorporating agroforestry practices — a marked shift from when she first started advocating for that approach.

“When we first started talking to chocolate companies and traders about agroforestry, pretty much everybody thought I was a nutter,” she says. “But fast forward three years on and pretty much every major chocolate company and cocoa trader is developing an agroforestry plan.”

What that means on the ground, though, can vary widely, she says. Most of the time it is a company’s sustainability department that is pushing for agroforestry investment, not the C-suite. Some companies have committed to sourcing 100% of their cacao from agroforestry systems. Others are content with 5% of their cacao coming from farms that use agroforestry.

Alley cropping is a common form of agroforestry, where annual crops like hay, grains, or vegetables are grown between long rows of useful fruit or fodder trees. Here livestock advisor Gaabi Hathaway and herding dog Bohdi inspect ‘mulberry alley’ at Tennessee’s Caney Fork Farms. Image by Sherman Thomas courtesy of Caney Fork Farms.

What a company considers “agroforestry” can also be squishy, she points out — a situation that makes her and other climate advocates worry about companies using the term to “greenwash,” or essentially pretend to be environmentally friendly without making substantive change.

“What is agroforestry?” says Simon Konig, executive director of Climate Focus North America. “There is no clear definition. There’s an academic, philosophical definition, but there’s not a practical definition, nothing that says, ‘it includes this many species.’ Basically, agroforestry is anything you want it to be, and anything you want to write on your brochure.”

He says he has seen cases in South America where people have worked to transform degraded cattle ranches into cocoa plantations. They have planted banana trees alongside cocoa, which needs shade when young. But when the cocoa is five years old and requires more sun, the farmers take out the bananas.

“They say, ‘it’s agroforestry,’” Konig says. “So there are misunderstandings — there are different objectives and standards.”

He has been working to produce a practical agroforestry guide for cocoa and chocolate companies. One of the guide’s main takeaways, he says, is that there is not a one-size-fits-all approach to agroforestry. It depends on climate, objectives, markets, and all sorts of other variables.

This is one of the reasons that agroforestry has been slow to gain investor attention, says LeZaks of the Croatan Institute.

“There really aren’t the technical resources — the infrastructure, the products — that work to support an agroforestry sector at the moment,” LeZaks says.

Pigs raised on New Forest Farm in Wisconsin benefit from tree shade, fruits and nuts. Livestock serve multiple purposes in agroforestry, such as pest management, soil fertilization, and additional farm revenue. Photo courtesy of Savanna Institute.

While agroforestry is seen as having significant potential for the carbon offset market, its variability makes it a more complicated agricultural investment. Another challenge to agroforestry investment is time.

Tree crops take years to produce nuts, berries or timber. This can be a barrier for farmers, who often do not have extra capital to tie up for years.

It can also turn off investors.

“People are bogged down by business as usual,” says Stoian from World Agroforestry. “They have to report to shareholders. Give regular reports. It’s almost contradictory to the long-term nature of agroforestry.”

This is where Steinberg and Propagate Ventures come in. The first part of the company’s work is to fully analyze a farmer’s operation, Steinberg says. It evaluates business goals, uses geographic information system (GIS) components to map out land, and determines the trees most appropriate for the particular agricultural system. With software analytics, Propagate predicts long-term cost-to-revenue and yields, key information for both farmers and possible private investors.

After the analysis phase, Propagate helps implement the agroforestry system. It also works to connect third-party investors with farmers, using a revenue-sharing model in which the investor takes a percentage of the profit from harvested tree crops and timber.

Additionally, Propagate works to arrange commercial contracts with buyers who are interested in adding agroforestry-sourced products to their supply chains.

“Here’s an opportunity to work with farmers to increase profitability by incorporating tree crops into their operations in a way that’s context specific,” Steinberg says. “And it also starts addressing the ecological challenge that we face in agriculture and beyond.”

This report is part of Mongabay’s ongoing coverage of trends in global agroforestry, view the full series here.

Reposted with permission from Mongabay

Applying Rock Dust to Croplands Could Absorb up to 2 Billion Tonnes of CO2 from the Atmosphere, Research Shows

  • Major new study shows adding rock dust to farmland could remove carbon dioxide (CO2) equivalent to more than the current total emissions from global aviation and shipping combined – or around half of Europe’s current total emissions
  • Research identifies the nation-by-nation potential for CO2 drawdown, as well as the costs and the engineering challenges involved
  • Findings reveal the world’s highest emitters (China, India and the US) also have the greatest potential to remove CO2 from the atmosphere using this method
  • Scientists suggest unused materials from mining and the construction industry could be used to help soils remove CO2 from the atmosphere

Adding crushed rock dust to farmland could draw down up to two billion tonnes of carbon dioxide (CO2) from the air per year and help meet key global climate targets, according to a major new study led by the University of Sheffield.

The technique, known as enhanced rock weathering, involves spreading finely crushed basalt, a natural volcanic rock, on fields to boost the soil’s ability to extract CO2 from the air.

In the first nation-by-nation assessment, published in Nature, scientists have demonstrated the method’s potential for carbon drawdown by major economies, and identified the costs and engineering challenges of scaling up the approach to help meet ambitious global CO2 removal targets. The research was led by experts at the University of Sheffield’s Leverhulme Centre for Climate Change Mitigation, and the University’s Energy Institute.

Meeting the Paris Agreement’s goal of limiting global heating to below 2C above pre-industrial levels requires drastic cuts in emissions, as well as the active removal of between two and 10 billion tonnes of CO2 from the atmosphere each year to achieve net-zero emissions by 2050. This new research provides a detailed initial assessment of enhanced rock weathering, a large-scale CO2 removal strategy that could make a major contribution to this effort. 

The authors’ detailed analysis captures some of the uncertainties in enhanced weathering CO2 drawdown calculations and, at the same time, identifies the additional areas of uncertainty that future work needs to address specifically through large-scale field trials.

The study showed that China, the United States and India – the highest fossil fuel CO2 emitters – have the highest potential for CO2 drawdown using rock dust on croplands. Together, these countries have the potential to remove approximately 1 billion tonnes of CO2 from the atmosphere, at a cost comparable to that of other proposed carbon dioxide removal strategies (US$80-180 per tonne of CO2).

Indonesia and Brazil, whose CO2 emissions are 10-20 times lower than the US and China, were also found to have relatively high CO2 removal potential due to their extensive agricultural lands, and climates accelerating the efficiency of rock weathering.

The scientists suggest that meeting the demand for rock dust to undertake large-scale CO2 drawdown might be achieved by using stockpiles of silicate rock dust left over from the mining industry, and are calling for governments to develop national inventories of these materials.

Calcium-rich silicate by-products of iron and steel manufacturing, as well as waste cement from construction and demolition, could also be processed and used in this way, improving the sustainability of these industries. These materials are usually recycled as low value aggregate, stockpiled at production sites or disposed of in landfills. China and India could supply the rock dust necessary for large-scale CO2 drawdown with their croplands using entirely recycled materials in the coming decades.

The technique would be straightforward to implement for farmers, who already tend to add agricultural lime to their soils. The researchers are calling for policy innovation that could support multiple UN Sustainable Development Goals using this technology. Government incentives to encourage agricultural application of rock dust could improve soil and farm livelihoods, as well as reduce CO2, potentially benefiting the world’s 2.5 billion smallholders and reducing poverty and hunger.

Professor David Beerling, Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield and lead author of the study, said: “Carbon dioxide drawdown strategies that can scale up and are compatible with existing land uses are urgently required to combat climate change, alongside deep and sustained emissions cuts. 

“Spreading rock dust on agricultural land is a straightforward, practical CO2 drawdown approach with the potential to boost soil health and food production. Our analyses reveal the big emitting nations – China, the US, India – have the greatest potential to do this, emphasising their need to step up to the challenge. Large-scale Research Development and Demonstration programmes, similar to those being pioneered by our Leverhulme Centre, are needed to evaluate the efficacy of this technology in the field.”

Professor Steven Banwart, a partner in the study and Director of the Global Food and Environment Institute, said: “The practice of spreading crushed rock to improve soil pH is commonplace in many agricultural regions worldwide. The technology and infrastructure already exist to adapt these practices to utilise basalt rock dust. This offers a potentially rapid transition in agricultural practices to help capture CO2 at large scale.”

Professor James Hansen, a partner in the study and Director of the Climate Science, Awareness and Solutions Program at Columbia University’s Earth Institute, said: “We have passed the safe level of greenhouse gases. Cutting fossil fuel emissions is crucial, but we must also extract atmospheric CO2 with safe, secure and scalable carbon dioxide removal strategies to bend the global CO2 curve and limit future climate change. The advantage of CO2 removal with crushed silicate rocks is that it could restore deteriorating top-soils, which underpin food security for billions of people, thereby incentivising deployment.”

Professor Nick Pidgeon, a partner in the study and Director of the Understanding Risk Group at Cardiff University, said: “Greenhouse gas removal may well become necessary as we approach 2050, but we should not forget that it also raises profound ethical questions regarding our relationship with the natural environment. Its development should therefore be accompanied by the widest possible public debate as to potential risks and benefits.”

Ends

Contact

Sophie Armour, Media & PR Officer at the University of Sheffield: 07751 400 287 / 0114 222 3687 / sophie.armour@sheffield.ac.uk 

Notes

Embargoed study available here: https://drive.google.com/file/d/1m2zUuQMTd_KeJwH9wcNT8jHukHDOKKAs/view?usp=sharing 

FAQs on carbon drawdown with enhanced weathering developed by the Leverhulme Centre for Climate Change Mitigation are available here: http://lc3m.org/faqs/

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world’s leading universities.

A member of the UK’s prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

About the Leverhulme Trust

The Leverhulme Trust was established by the Will of William Hesketh Lever, the founder of Lever Brothers. Since 1925 the Trust has provided grants and scholarships for research and education.

Today, it is one of the largest all-subject providers of research funding in the UK, currently distributing £100 million each year. The Leverhulme Centre for Climate Change Mitigation at the University of Sheffield is part of a network of seven Leverhulme Trust research centres based in universities throughout the UK.

For more information about the Trust, please visit www.leverhulme.ac.uk  and follow the Trust on Twitter @LeverhulmeTrust

Seeds of Change in Times of Crisis

In the context of the COVID-19 pandemic, many organizations in the U.S. and Latin America that save, produce and sell seeds have seen a significant increase in the demand for native seeds. This new interest in seeds comes with great opportunities, but also some challenges.

Motivated to learn more about this phenomenon, Valeria García López, a researcher in agroecology in Colombia and Mexico, and David Greenwood-Sánchez, a political scientist specializing in GMO regulation in Latin America, set out to do some research.

Both López and Greenwood-Sánchez are independent researchers who in recent years have been part of different movements in defense of seeds in Latin America and the U.S. Both believe that this new interest in seeds, in the context of the current economic, food and health crisis, highlights the challenges local seed systems are facing in a post-pandemic scenario.

We recently spoke with López and Greenwood-Sánchez to learn more about their work, their love for seeds and biocultural diversity, as well as the motivations for their research.

Seeds and biocultural diversity: a love story

Greenwood-Sánchez is a native of Minnesota but his mother is Peruvian. He has a Bachelor’s Degree in Economics and a Master’s Degree in Public Policy. During his studies, he had to do an internship and decided to do it in Peru, looking for his roots.

Over the course of his research, Greenwood-Sánchez found out that Cusco, a city in the Peruvian Andes, had declared itself a GMO-free region, thanks to a push by potato growers and the existing moratorium on GMOs in Peru. Curious to know more, Greenwood-Sánchez ended up doing an internship at the Parque de la Papa (Potatoe’s Park), an association of five indigenous communities that manages more than 1000 varieties of potatoes and works on issues related to biodiversity, intellectual property and biocultural records. There, he discovered agrobiodiversity and its link to culture and traditions, and how people can promote agrobiodiversity through their culture and day-to-day life. He then decided to pursue a Doctorate in Public Policy at the University of Wisconsin, Madison.

David Greenwood-Sánchez planting potatoes in Minnesota

Greenwood-Sánchez’s research has focused on the construction of systems that regulate GMOs in Latin America, using Mexico and Peru as case studies. In Mexico, certain GM crops can be planted, while in Peru, there is a moratorium on GMOs. His research focuses on the different groups that come together for the defense of biodiversity, on how the state, society and global markets join their efforts to demand policies that regulate the use of GMOs. This is closely related to the identity of each country, its people and how that identity is connected to their biodiversity, for example corn in Mexico, or potatoes in Peru.

García López is Colombian, but has been living in Mexico for five years. For the past six years she’s worked with networks of seed keepers, mainly in Antioquia, where she is originally from. She studied biology and then did her internship on agrobiodiversity and orchards in southern Colombia, near the border with Ecuador. There she discovered the wonders of agrobiodiversity. Being in love with the High Andean region, she went to Ecuador, where she did a Master’s Degree in conservation of the páramo ecosystem and its relationship with climate change.

Back in Colombia, García López discovered the Colombian Free Seeds Network (RSLC). But in Antioquia, her native region, there was no local seed network, so she and other people were assigned to work to create a division of the network RSLC. Since the end of 2014, she worked to support the creation of community seed houses that would represent the first steps to create a Participatory Seed Guarantee System (GSP). That system would allow a certification of agroecological seeds under criteria internally established by the territories themselves, by indigenous and small farmers’ organizations—not by external entities, whether private or public.

This process has also allowed for progress toward the declaration of GMO-free territories. By taking advantage of protected indigenous reserves, which are exempt from complying with the Free Treaties Trade, García López and others were able to ban GMOs from the indigenouse reserves, and create a program to promote the conservation of native seeds.

García López recently completed her PhD in Ecology and Rural Development at the Colegio de la Frontera Sur (ECOSUR), Mexico. The topic of her research was how seed guardian networks use different strategies to defend seeds. She studied cases both in Mexico and Colombia after observing that in both countries, the defense of native and creole seeds has intensified and how seed networks have come together to face threats. In fact, seed initiatives that had already existed but worked in isolation are now joining forces around a common goal.

Valeria García López holding a huge and beautiful squash she just harvested.

COVID-19 as catalyst for the agroecological movement

The pandemic of 2020 has exposed the fragility of the conventional food system, with its agribusiness corporations and long supply chains. Food supply problems, especially in urban centers, as well as an increase in prices and speculation have only been symptoms of this fragility.

Today, it is the small farmers who in many places keep local supplies going. In Brazil, for example, farmers from the Landless Workers Movement (MST for its Portuguese acronym) are donating food to people living in the cities. Organized movements in the countryside are mobilizing a lot of food, showing the capacity of alternative movements to respond.

The relationship between food and health is another topic spotlighted by the pandemic. People with chronic diseases linked to bad eating habits—diseases such as diabetes, obesity, hypertension and high cholesterol caused by bad eating habits—are more vulnerable to the virus. In fact, the strength or weakness of the immune system is greatly determined by our diet.

Hippocrates, father of modern medicine, said it more than 2,500 years ago: “Let food be thy medicine and medicine be thy food.” This is why many people today are paying more attention to the food on their plates, its origin, how it was cultivated. People are more interested than ever in healthy eating, planting and having home gardens, and buying local food directly from the producers.

The pandemic has been shown the need to promote local agro-ecological food systems, which have proven to be more resilient than agribusiness systems. In this context, local and resilient seed systems become especially relevant, as they are the foundation upon which food sovereignty is built.

Pandemic times: Panic or hope? Looking for the seeds of change

García López and Greenwood-Sánchez are motivated to show there is hope despite the current global health and economic crisis. They decided to look beyond the mass media’s panic-inducing narrative about food insecurity, and investigate for themselves what was happening with producers. In particular, they wanted to know more about the initiatives related to the defense, reproduction, exchange and commercialization of native seeds, with the aim of learning and preserving traditional knowledge and practices in times where resilient and regenerative systems are much needed.

 To carry on their research, they followed up on the news, and they conducted a series of surveys and personal interviews (though not face-to-face, to comply with current social distancing). More than 25 initiatives from six countries in the Americas participated in the research: U.S., Mexico, Colombia, Chile, Argentina and Peru. Medium-sized and family owned companies and individual, community, rural and urban initiatives gave their insights.

Here are some of the conclusions they drew from their research:

  • People are going back to appreciating what’s essential, the common goods, what sustains life. The crisis highlights the need to know where our food comes from, the importance of soil, water, and food justice.
  • More people are realizing the importance of growing their own food. Many people and organizations are now more aware of the importance of growing food for self-consumption. Many are starting their own gardens for the first time.
  • There’s a greater appreciation for the work seedkeepers do. The pandemic has generated greater awareness regarding the importance of food and farmers, as well as the role of seedkeepers who have preserved agrobiodiversity in a traditional way and who also have the knowledge on how to cultivate and care for seeds.
  • There’s renewed interest in seeds and food exchanges. Many traditional practices from indigenous people, such as Ayni in the Andean region, are becoming even more valuable today and inspire new forms of collaboration through networks of trust, support and solidarity.
  • People are realizing the need to be more creative to meet the rising demand for seeds. Many seed initiatives and ventures have been overwhelmed by the growing demand, exceeding their capacity to respond, and have had to creatively restructure their work in order to cope with the explosion of orders.

Collective planting. Photograph by Valeria García López.

 Who is behind the growing demand for seeds?

García López and Greenwood-Sánchez have found that it is not so much the institutions, companies or the government but the people and the communities who have been organizing themselves to acquire seeds and plant them. People are very interested in finding solutions and helping other people, out of pure solidarity.

Greenwood-Sánchez mentions, for example, an initiative that he promoted together with a group of friends, which today brings together about 700 people. The “Twin Cities Front Yard Organic Gardeners Club” encourages people to grow food on their front yard. Traditionally, in U.S. cities, people would have their vegetable gardens in the backyard, a custom that was especially adopted after the Second World War (Victory Gardens). In general, in the front yard there is just grass. But this is changing with the growing movement to replace grass with food. 

Front yard being turned into a vegetable garden. Photo by David Greenwood-Sánchez

Another example in Saint Paul, Minnesota, where Greenwood-Sánchez lives, is the “Outplant the Outbreak” campaign, which consists of making seed packets and putting them inside boxes where books are normally put, for public use and for free.

Envelopes with seeds for free. Photo by David Greenwood-Sánchez

In Peru, the government has started a campaign called “Hay que papear” to address the crisis by promoting potato consumption, as a complete, nutritious and cheap local food, and also to counter the general tendency to devalue this crop and to make its producers more invisible.

With growing interest come new challenges

While interest in seeds and growing food has spiked during the pandemic, the uptick in  interest has revealed new challenges. As part of their research, García López and Greenwood-Sánchez identified some of these challenges and potential solutions, including:

  • The greater demand for open-pollinated seeds requires a necessary increase in supply, which poses challenges in the organizational, technical, training, economic and legislative areas. Structural changes are needed to facilitate the growth and development of this sector.
  • Current seed laws and international treaties favor transnational seed companies and the promotion of GMOs. These laws threaten local seed systems, which are the basis of food sovereignty. Some examples are UPOV 91, the Seed Production, Certification and Commercialization Law or the Reforms to the Federal Law of Plant Varieties, in Mexico. To strengthen people’s food sovereignty, the first step should be to curb these treaties and laws and promote those that strengthen local seed systems, which have proven to be much more resilient against supply chain outages and the climate crisis. Fortunately, the greater awareness of the importance of agriculture and food, as well as the greater interest in growing your own food, is also bringing to the table the importance of these seed laws and treaties.
  • There need to be efforts to create public policies and laws that stimulate and strengthen local seed systems, including structural reforms at the market level to allow commercialization and seed exchange initiatives that cannot be subject to the same certification criteria as large transnational corporations.
  • One of the main arguments against the creation of seed laws that regulate and control the production of native and creole seeds is that the production of these seeds is not stable, unique or homogeneous. The main value of native and creole open-pollinated seeds is their genetic diversity, which gives them enormous capacity to respond and adapt to new geographic and climatic conditions. In Colombia, over a period of three years, several workshops and forums were held at the local and national level in order to identify the most important principles for seed guardians. The Participatory Guarantee Systems (SPG) has put together its own criteria, based on seven principles. It should be noted that one of the criteria of the Network of Free Seeds of Colombia regarding the sale of seeds specifies that in fact seeds themselves are not sold. What is sold is all the work behind the seeds, and what makes their existence possible. This is great progress, since it recognizes seeds as a common good which cannot be commercialized.
  • It is necessary to promote and protect the autonomy of the communities that have been practicing agriculture and that have cared for, selected and multiplied seeds for thousands of years. They do not need external validation, because these are practices that they have done for a long time. The challenge, rather than imposing external rules, is to ask ourselves how we can support them, how we can be useful for their work to prosper.
  • As more and more people start to grow their own food for the first time, it is essential to generate and promote educational spaces or gardens where these people can learn how to plant and maintain their gardens. It is important to understand the seeds should be planted, not saved and accumulated. Using them, multiplying them, exchanging them, donating them is the way to go.

 Next steps

Once García López and Greenwood-Sánchez complete the analysis of their research, they will share the results with all those who participated. They will also create a report, using plain language so it is suitable for the general public, to highlight the challenges that local seed systems face with this growing interest for native and native seeds.

Would you like to know more about the work Valeria and David do?

Write them a message: vagarcialopez@gmail.com, davidgreenwoodsanchez@gmail.com

Claudia Flisfisch Cortés is an agroecology specialist who is part of the commission of seeds and the articulating commission of RIHE (Chilean Network of Educational Gardens).To keep up with Regeneration International news, sign up for our newsletter.

Perspectives from Chad, Africa: COVID-19, Climate Change and Indigenous Knowledge

REPUBLIC OF CHAD, Africa – While COVID-19 has forced most of the world into lockdown, we are fortunate to report that our “Trails of Regeneration” video series is alive and well. Over the last few months we’ve focused on reporting the effects of the pandemic on farmers and ranchers and indigenous peoples from around the world. 

In our latest “Trails of Regeneration” episode, “Perspectives from Chad, Africa: Covid-19, Climate Change and Indigenous Knowledge,” we proudly feature Hindou Oumarou Ibrahim, an award-winning environmental activist and indigenous woman from the Mbororo pastoralist community in Chad, which practices nomadic cattle herding.

Ibrahim is an expert in adaptation and mitigation of indigenous peoples and women in relation to climate change, traditional knowledge and the adaptation of pastoralists in Africa. She is founder and coordinator of the Association for Indigenous Women and Peoples of Chad (AFPAT), which works to empower indigenous voices and improve quality of life by creating economic opportunities and protecting the natural resources to which pastoralist communities depend on.

Ibrahim was recently named Emerging Explorer 2017 by National Geographic. She has worked on the rights of indigenous peoples and the protection of the environment through the three Rio Conventions—on Biodiversity, Climate Change and Desertification—which originated out of the 1992 Earth Summit. 

The Mbororo pastoralist community reside near Lake Chad, located in the far west of Chad and the northeast of Nigeria. It was once Africa’s largest water reservoir in the Sahel region, spanning 26,000 kilometers. However, the lake has continued to shrink over time and is now thought to be one-fifth of its original size. 

Experts say climate change, population growth and inefficient damming and irrigation systems are to blame. The loss of water in Lake Chad is having serious adverse effects on communities, such as the Mbororo people, who are forced to migrate greater distances in search of water and green pastures. 

In a Zoom interview with Regeneration International, Ibrahim explained that in one year, the Mbororo people can travel up to a thousand kilometers and beyond, relying solely on nature and rainfall. Ibrahim told us:

“Nature is our main health, food and education system. It represents everything for us. In our culture, men and women depend equally on nature in their daily activities. The men herd the cattle towards water and pastures, while the women collect firewood, food and drinking water for the community. This provides a socially strong gender balance to our community.”

However, the degradation of natural resources is threatening these traditions, leading to human conflicts, particularly between farmers and pastoralists whose cattle sometimes roam onto nearby cropland and cause damage. These conflicts have forced Mbororo men to urban areas in search of a new line of work. Sometimes they don’t return, and the women, children and elderly are left behind to fend for themselves, Ibrahim told us.

In an effort to preserve the Mbororo’s nomadic way of life, and to help resolve conflicts between farmers and herders, Ibrahim established a project in 2012 with the Indigenous Peoples of Africa Coordinating Committee, United Nations Educational, Scientific and Cultural Organization, and the World Meteorological Organization. The project uses indigenous knowledge and 3D mapping technology to map Chad’s Sagel region, home to 250,000 Mbororo people. 

Through its 3D maps, the project brings together rival farmers and pastoralists to collaboratively draw lines of land ownership and reach agreements on grazing pathways and corridors. The work has helped farmers and pastoralists agree on land boundaries, as well as established a calendaring system to coordinate grazing patterns with the harvesting of crops. 

The result is a win-win solution where cattle fertilize and enrich the land through purposeful grazing. This prevents crop damage and helps to mitigate climate change. According to Ibrahim:

“When we experience climate change, we use our nomadic way of life as a solution. When we go from one place to another, resting two or three days per location, the dung from our cattle fertilizes the land and helps the ecosystem regenerate naturally.

“Our traditional knowledge is based on the observation of nature which is the common denominator of all the traditional indigenous knowledge around the world. We live in harmony with biodiversity because we observe insects that give us information on the health of an ecosystem.

“We look at bird migration patterns to predict the weather and we learn from the behavior of our animals who communicate a lot of information. We look at the wind. When the wind transports a lot of particulates from nature during the dry season, we know that we are going to have a good rainy season. This is free information we use to help balance community and ecosystem health and adapt to climate change.”

Ibrahim believes that events such as climate change and the COVID-19 pandemic, are nature’s way of letting us know she is mad because we are mistreating her. In order to heal the planet, we must listen to our wisdom and respect nature, she says.

Oliver Gardiner is Regeneration International’s media producer and coordinator for Asia and Europe. To keep up with Regeneration International news, sign up for our newsletter.

What Kelp Forests Can Do for the Climate

Sixty years ago, Tasmania’s coastline was cushioned by a velvety forest of kelp so dense it would ensnare local fishers as they headed out in their boats. “We speak especially to the older generation of fishers, and they say, ‘When I was your age, this bay was so thick with kelp, we actually had to cut a channel though it,’” says Cayne Layton, a postdoctoral research fellow at the Institute for Marine and Antarctic Studies at the University of Tasmania. “Now, those bays, which are probably at the scale of 10 or 20 football fields, are completely empty of kelp. There’s not a single plant left.”

Since the 1960s, Tasmania’s once expansive kelp forests have declined by 90% or more. The primary culprit is climate change: These giant algae need to be bathed in cool, nutrient-rich currents to thrive, yet regional warming in recent decades has extended the waters of the warmer East Australian Current into Tasmanian seas to devastating effect, wiping out kelp forests one by one. Warming waters have also boosted populations of predatory urchins, which gnaw on kelp roots and compound the loss.

Tasmania isn’t the only site of destruction. Globally, kelp grow in forests along the coastlines of every continent except Antarctica; most of these are threatened by climate change, coastal development, pollution, fishing, and invasive predators. All of this matters because these ecosystems provide huge benefits: They cushion coastlines against the effect of storm surges and sea level rise; they cleanse water by absorbing excess nutrients; and they also slurp up carbon dioxide, which can help drive down ocean acidity and engineer a healthy environment for surrounding marine life. These forests—which in the case of the giant kelp species that grows in Tasmania, can reach heights of 130 feet—also provide habitat for hundreds of marine species.

Having spent years studying these benefits, Layton is now trying to bring a patch of Tasmania’s struggling kelp forests back to life. Every few weeks, he dives out to inspect three 39-by-39-feet plots he’s created off the coast, each containing fronds of baby kelp, springing from ropes that are tethered to the ocean floor. These kelp nurseries are part of Layton’s project to determine whether climate-resilient “super-kelp” that has been raised in a laboratory will fare better in Tasmania’s changing seas. But his experiment also brings attention to the extraordinary potential of kelp to absorb carbon and help tackle climate change.

Climate-Forward Kelp

The capacity to draw CO2 from the atmosphere has added “climate mitigation” to kelp’s list of benefits. When we talk about ways oceans can sequester carbon, the conversation typically revolves around mangroves, salt marshes, and seagrass meadows. But “the magnitude of carbon sequestered by algal forests is comparable to that of all those three habitats together,” says Carlos Duarte, a professor of marine science at the King Abdullah University of Science and Technology in Saudi Arabia. “Algal forests should not be left behind. They have been hidden for much too long.”

There’s a lot we still don’t understand about how kelp store CO2. But researchers are starting to build a better picture of this giant seaweed and how we might improve its capacity to help tackle climate change.

The dilemma is that kelp itself is also under siege from warming seas—which is the focus of Layton’s work. Of Tasmania’s original forest, only around 5% remains. Researchers think these plants have survived through natural variation and selection.

“There do seem to be individuals that are adapted and capable of living in the modern conditions in Tasmania that we have created through climate change,” Layton explains.

From this remaining pool of wild giant kelp, he and his colleagues have identified what Layton calls “super kelp” that may be more resilient against the effects of warming seas. From these he has harvested spores, embedding them in twine to be wound around the ropes that are rooted into the sea floor. The hope is that these super kelp spores will develop into saplings that will in turn set their own spores adrift on ocean currents, seeding new mini-forests nearby.

“For giant kelp restoration to work at the scale of the coastline, we’ll need to plant many of these seed patches,” Layton explains. “The idea is that, over time, those will self-expand, and eventually coalesce—and there’s your giant kelp forest back.”

Other kelp restoration projects around the world are tackling different threats. In Santa Monica Bay, California, conservationists are trying to save local kelp forests from voracious purple urchins, whose population has exploded since a major predator—the sea otter—dramatically declined decades ago. The urchins’ unchecked appetite has contributed to the loss of three-quarters of the bay’s former kelp forest. But fishers are carefully hand-clearing urchins—the draw being that as kelp is restored, fisheries are too. So far they’ve managed to clear 52 acres (21 hectares), which the kelp forest has reclaimed.

“All we had to do is clear the urchins out of the way,” says Tom Ford, executive director of The Bay Foundation, which is leading the effort.

The project’s success has caused others to ponder its carbon sequestration potential, Ford says. The city of Santa Monica recently established a goal of reaching carbon neutrality by 2050, and asked The Bay Foundation how kelp restoration could factor into that. A nonprofit called Sustainable Surf has also launched a program enabling people to invest in the kelp restoration project to offset their own carbon footprints.

“These kelp forests grow so fast and suck in tremendous amounts of carbon,” Ford says. In California, there’s a focus on preserving wild lands with carbon credits, he explains. But the uptick in regional wildfires means that land-based forests might no longer seem like the safest bet. “Now, working off the coast is becoming perhaps a more important option.”

Similarly, in the United Kingdom, a plan known as “Help Our Kelp” aims to restore a 70-square-mile tract of historic kelp forest along the country’s southern Sussex Coast. It has attracted the interest of two local councils and a water company, which are intrigued by its potential to provide a new carbon sink. “All three organizations are interested in carbon, but also interested in the wider benefits [of kelp forests],” explains Sean Ashworth, deputy chief fisheries and conservation officer at the Association of Inshore Fisheries and Conservation Authorities, a partner on the project.

Captured Carbon?

Yet key questions remain about where all the stored carbon ends up. Trees stay in one place, so we can reasonably estimate how much carbon a forest stores. Kelp, on the other hand, can float off to unknown destinations. If it begins to decompose, its stored carbon may be released back into the atmosphere, explains Jordan Hollarsmith, a marine ecologist at Simon Fraser University and the Department of Fisheries and Oceans in Canada. “Truly removing that carbon from the global carbon budget would require that those kelp fronds somehow be buried, or transported to the deep sea,” she says.

In fact, emerging research is beginning to paint a picture of seaweed’s journey through the ocean. A 2016 study estimated that about 11% of global macroalgae is permanently sequestered in the ocean. The bulk of that, about 90%, is deposited in the deep sea, while the rest sinks into coastal marine sediments.

“If the algae reaches below the 1,000-meter horizon, it is locked away from exchange with the atmosphere over extended time scales, and can be considered permanently sequestered,” says Dorte Krause-Jensen, a professor of marine ecology at Aarhus University in Denmark and author on the 2016 study along with Duarte. Still, the challenge of tallying this up remains. Compared with mangroves, seagrasses, and salt marshes, which deposit carbon directly and reliably into the sediments below, the inherent changeability of a kelp forest makes the sequestration harder to accurately quantify. But this could change, Duarte say, if kelp forests came under strict human management—something that’s already happening with smaller species of seaweed that are being farmed worldwide for food products and fertilizer.

Future Kelp

Could we similarly bring vast kelp forests under human control for the benefit of the planet? Brian Von Herzen, executive director of the nonprofit The Climate Foundation, thinks so. The Climate Foundation is a partner on Cayne Layton’s project for climate-resilient kelp, and Von Herzen is a major player in the field of marine permaculture, a type of open-ocean seaweed farming that mimics wild kelp forests to regenerate marine ecosystems, boost food security and sequester carbon.

Von Herzen is now trying out prototype arrays in the Philippines to help make seaweed farming more resilient to climate change. Central to Von Herzen’s vision is an array on which kelp would grow, hovering about 80 feet below the ocean’s surface. Using solar, wind, and wave energy to drive their motion, hoses fixed beneath the structure would siphon up colder, nutrient-rich water from the depths below. This cool water infusion would re-create an ideal micro-environment for the tethered kelp to thrive; the kelp would then oxygenate the water and create new fish habitat—all while capturing carbon, Von Herzen explains.

While these deepwater kelp forests are only hypothetical, Von Herzen is now testing prototype arrays in the Philippines to help make seaweed farming more resilient to climate change. Seaweed farmers there have suffered major losses because of warm ocean currents that sweep in and decimate their crops. But with the upwelling of cooler water generated by the new arrays, seaweed is starting to flourish again.

This project, and others being developed off the coasts of Europe and the U.S., are laying the groundwork for Von Herzen’s ultimate ambition: To dramatically scale up kelp arrays, eventually spanning great tracts of deep ocean where they could collectively absorb billions of tons of CO2 while also providing food security in the form of shellfish aquaculture and fish habitat and providing what he calls “ecosystem life support.”

Kelp could be buried in the deep sea to sequester carbon or be harvested to produce low-emissions biofuel and fertilizers, he says. “We use the thriving wild kelp forest as the ecosystem model for what we can scale in the oceans,” Von Herzen says.

Current Benefits

On the back of her research, Krause-Jensen is optimistic about the carbon sequestration potential of kelp and the possibility that it could be dramatically enlarged by sustainable farming. But practically speaking, in nations such as Australia and the United States, Duarte says, “it’s harder to get a concession for a seaweed farm than for oil and gas exploration.” And global systems for providing compensation for sequestering carbon are not yet set up to accommodate kelp.

Christophe Jospe, the chief development officer at Nori, a company that is working to make it easier to fund carbon removal initiatives, argues that with such a powerful sequestration tool at our disposal, we should accelerate its acceptance—even if seaweed farmers are only able to guarantee sequestration for, say, 10 years.

“We are throwing ourselves into a heated environmental debate where people say, well, that’s not permanent. But nothing is permanent—and it’s the reservoir of carbon that we need to increase because of the climate crisis that we’re in,” he says. “So actually, it’s a huge environmental value for a program to ensure 10 years of permanence.”

Things might gradually be moving in that direction. Working with Oceans 2050, a global alliance to restore the world’s oceans led by Alexandra Cousteau, Duarte is now helping to develop a carbon credit program that could be applied to seaweed farming. This makes it possible to imagine a world where we might one day invest carbon credits in kelp farms or where wild forest restoration might count as mitigation.

Meanwhile, back in Tasmania, Layton continues to watch over his nurseries of infant kelp, and he urges us to be cognizant of what kelp forests are already doing for us right now.

“They’re exactly like forests on land. There aren’t many people questioning their value,” he says. “Some people might not be interested in seaweed. But they may be interested in fishing, or their beachfront property not getting washed away, or making sure that their coastal waters are clean. All of those things are intimately tied to kelp forests.”

Reposted with permission from Yes Magazine

‘Carbon Farming’ Could Make US Agriculture Truly Green

ON A FARM in north-central Indiana, Brent Bible raises 5,000 acres of corn and soybeans that go into producing ethanol fuel, food additives and seeds. In Napa Valley, California, Kristin Belair picks the best grapes from 50 acres of vineyards to create high-end cabernet sauvignon and sauvignon blanc wines. Both are part of a growing number of “carbon farmers” who are reducing planet-warming greenhouse gases by taking better care of the soil that sustains their farms. That means making changes like plowing fields less often, covering soil with composted mulch and year-round cover crops, and turning drainage ditches into rows of trees.

Now Congress is considering legislation that would make these green practices eligible for a growing international carbon trading marketplace that would also reward farmers with cash.

This morning, Bible is scheduled to testify at a Capitol Hill hearing before the Senate Agriculture Committee that is considering the carbon farming legislation.

KEEP READING ON WIRED

Regenerative Products Just Might Save the Planet – and the Economy

With the help of science, we’ve come to understand our impact on the planet that is our home. With each item we produce, building we construct, forest we cut down, acre we plow, and journey we make — enabled by resources we derive from our planet’s prehistoric past — we do small amounts of harm to the fragile balance of nature that sustains life. As we’ve replicated our capabilities and developed our ability to scale, those tiny harms have multiplied to the point that the cumulative damage now threatens our planetary life-support system.

Efforts to address this situation have so far consisted of denial, modest efficiency improvements, recycling, and, in some cases, the substitution of products less harmful than their predecessors. But these well-intentioned actions are not nearly enough to stop, let alone reverse, the effects of global climate change. What we need is a way to rewind the ecological tape — a regenerative approach — and the leadership to make it happen.

KEEP READING ON STRATEGY – BUSINESS

“I Can’t Breathe,” Says Africa

Ever since I saw the video of the death of George Floyd in Minneapolis, Minnesota, on the 25th May, killed by a police man who knelt on his neck for NINE MINUTES, while he was calling for his dead mother and for mercy, I have been upset and angry, as have been most people across the world and amongst different races.  I ‘ve been watching the riots in the USA and all over the world and wondering whether this will pass by as just another of these events, or whether change really is on the horizon.

We know this systemic racism started four centuries ago and, through endless and varied legal and political processes, was designed to benefit one section of a society. All other systems are subservient to this system and all other people are subservient to a race, a large number of whom are fighting to keep the privelege they feel is rightfully theirs.

I also see the knee on George Floyd’s neck as also being symbolic of how neoliberalism, and the associated neo colonialism, are putting their knee on the neck of Africa. I hear Africa saying, ‘I can’t breathe.’

KEEP READING ON AFSAFRICA

Native Plants Sequester Carbon in the Soil for Longer

Exotic plant species release 150 percent more carbon dioxide from the soil than native New Zealand plants, according to a new study from the Bio-Protection Research Centre published in Science.

The research is the latest development in an extended scientific debate over whether to prioritise planting native or exotic species to increase biodiversity and fight climate change.

While it doesn’t upset the longstanding scientific consensus that faster-growing plants sequester more carbon – and that exotic species planted outside their usual range will grow faster – the study does complicate the picture of the carbon cycle.

Carbon cycling and the soil

So what is the carbon cycle and how does CO2 get into the soil in the first place?

“It’s really important to think of it as a cycle,” the study’s lead author Dr Lauren Waller told Newsroom. Waller is a researcher at Lincoln University and a postdoctoral fellow at the Bio-Protection Research Centre.

While most people understand that plants remove carbon dioxide from the atmosphere, they don’t always realise what happens next.

KEEP READING ON NEWSROOM

The Path Beyond Extinction and Escape: Return to Earth, Regenerate and Share

Message for World Environment Day, June 5, 2020  

By Dr Vandana Shiva

On May 31, while people were dying during the coronavirus pandemic, while millions had lost their livelihoods and were going hungry during the “lockdown,” while millions were marching in city after city in the USA to protest against police brutality and police violence after the killing of George Floyd by the police in Minneapolis, billionaire Elon Musk launched Space X.

For me this was a brutal display of the hubris, indifference and power of the 1% who have pushed ecosystems, communities, countries and humanity to the brink.

Musk wants to create a “self sustaining” Space X city on Mars over the next century for a privileged faction of humanity. He ignores the fact that there is no Planet B, that the Earth is our only living planet, she is Gaia, she is alive.

Musk talked about being emotional during the launch of Space X. Powerful men have “emotions” for their machines, not for people or other beings. They talk of humans becoming a “space bearing civilization and a multi-planetary species.” They are still in denial that we are all earthlings who share life with other beings on the earth, our common home.

The billionaires who have violated planetary boundaries and contributed to the destruction of the earth and injustice and inequality in society, seem to want to “escape” from their humanity and the threat of extinction they helped create.

As members of the earth community they have the responsibility to care for the earth, not exploit her and when the damage is done, decide to abandon her to colonize other planets.

With the money Musk is pouring into Space X, millions would be fed and engaged creatively in regenerating the Earth, our common home, making it livable for present and future generations, everywhere.

The sixth mass extinction is a manmade phenomenon:  It is driven by the limitless greed of the few.

Take just one example, even when it is painted “green” – the limitless appetite of Musk’s electric car industry for Lithium has led to the expansion of lithium mines in Northern Tibet, Southern America and Chile, and Bolivia. With the demand for electric cars, the demand for lithium is expected to more than double by 2025 with exponential damage to the environment and surrounding communities.

According to Evo Morales, the former President of Bolivia, the coup against him was a lithium coup. The coup came a week after Morales nationalized lithium on November 4, 2019, saying it belongs to the Bolivian people, not to multinationals, and cancelled the December 2018 agreement with Germany’s ACI Systems Alemania (ACISA) following weeks of protests from residents of the Potosí areawhich has 50% to 70% of the world’s lithium reserves in the Salar de Uyuni salt flats. ACISA provides batteries to Tesla owned by Leon Musk and the coup resulted in a massive rise in the company’s stock. [1] [2]

When the rich and powerful destroyed the binding Climate Change treaty in Copenhagen in 2009, Evo Morales addressed the Conference of Parties, reminding everyone that governments were supposed to be negotiating ways to protect Mother Earth, not the rights of polluters.

As a countermeasure, he announced he would call a people’s Summit on Climate Change and the Rights of Mother Earth. I was honored to work with the group created by the Government of Bolivia to prepare a Draft Universal Declaration on the Rights of Mother Earth.[3]

As Earth Citizens we have a choice – to either follow the market’s laws of greed and unlimited profit or the laws of the Earth.

As we make shifts to a post COVID-19 economy, we need to take into account the full ecological, social, and political costs of what is being offered and what choices we make.

Rendering invisible the real costs to the earth and people is how the mega corporate world accumulates its wealth, polarizing society further, denying millions their fundamental rights, undermining democracy, and increasing their ecological footprintleaving these costs to be born by the earth and vulnerable communities.

As always, colonizers leave the places and spaces they have destroyed and polluted, and find new colonies to occupy and extract from, touting them as the next step of progress, as solutions to the ecological and poverty crises they have contributed to, finding other places and other people to dominate and plunder.

Cecil Rhodes who colonized Zimbabwe (formerly Rhodesia) stated frankly:

“We must find new lands from which we can easily obtain raw materials and at the same time exploit the cheap slave labour that is available from the natives of the colonies. The colonies would also provide a dumping ground for the surplus goods produced in our factories”.[4]

This is still the model of the economy of the 1%. The tools of extraction, and the colonies might change but the patterns of colonization remain unchanged – grab and steal what belongs to others, make it your own property, collect rents from the original owners, transform the displaced  into cheap slave labour to provide cheap raw materials, and turn them into consumers for your industrial products.

For Elon Musk, the colonies are both other planets like Mars and countries rich in lithium. For Bill Gates and Big Tech, the new colonies are our bodies and minds – as spelled out in WIPO’s patent no. WO2020/06060 which the billionaire has just been granted at the peak of the coronavirus and in the midst of lockdown at the end of March.

This Is the next step in the tech giants’ plan for the digitalization of the world where people and their work are being rendered “useless” and are being reduced to “users” of the “machines.”

A digital dictatorship based on the premise that 90% of humanity is disposable has no obligation to social justice and human rights. A digital dictatorship is not a life generating and livelihood supporting economy. It can work through extraction of data from our minds and bodies for a few years as “surveillance capitalism,” but because it does not create the generative conditions that support life in nature’s economy and the sustenance economy of people, because it does not nourish our health, our bodies and minds, or our creativity, our freedom or our earth being – it will destroy the ecological and social base of the economy and our future as a species.

Denial of ecological processes that support the economy, and externalizing social and ecological costs, creates conditions for ecological collapse.

Economy and ecology are both derived from the same word “oikos” our home, both our planetary home as well as the particular places we call home. Yet what is called economy today is destroying our common home.

Aristotle defined “oikonomia” as the “art of living.” He differentiated it from the “art of money making” which he referred to as “chrematistics.”

The game billionaires play is not worthy of being called economy, either as care for the home, or as the art of living. It is extractive, naked money making, at war with life and creativity.

The Digital Giants are misleadingly creating the language of “dematerialization,” as if the digital economy will run on thin air, with no resources, no energy. However, a digital economy is very energy intensive and has a very heavy social and ecological footprint. Digital technologies now emit 4% of greenhouse gas emissions (GHG), and its energy consumption is increasing by 9% a year.

Data traffic is responsible for more than half of digital technology’s global impact, with 55% of its annual energy consumption. Every byte transferred or stored requires large scale and energy-greedy terminals and infrastructures (data centers, networks). This traffic is currently increasing by more than 25% a year. How long will it take before the ecological load of the digitalization of every aspect of our life will push the remaining ecosystems to collapse, driving the surviving species to extinction?[5]

All democratic societies and citizens need to assess these costs, and ensure that the “precautionary principle” and “polluters pays principle” are applied to the digital economy. That polluters do not “escape” their ecological and democratic responsibilities, and dictators do not impose their “surveillance capitalism.”

There are options beyond colonization, beyond extinction ,which first pushed other species and other cultures to extinction – and is now threatening the extinction of the entire human species.

Instead of the rich ignoring and fleeing  from the Earth, the path as humanity we should be following is to Return to Earth, in our minds, our hearts, and in our lives – as one Earth Community with a potential to co-create, coproduce, and regenerate and allow the earth to provide for all.

This is the path to reclaiming our creative powers to shape our economies and democracies from the bottom up. This is the practice of Earth Democracy.

We need to shift from Anthropocentrism to the recognition that all humans and all beings are members of one Earth Family. The assumption of superiority of humans over other species, and some humans over others of a different color, gender, or religion is at the root of violence against women, blacks, and indigenous people. It has justified extermination of species and cultures. It is what led to the brutal killing of George Floyd, and many others before him. And this assumption of anthropocentrism is at the root of the extinction crisis.

We need to shift from the assumption that violating planetary boundaries, ecosystem boundaries, species boundaries, and human rights is a measure of progress and superiority – to creating economies based on respecting ecological laws and ecological limits, and respecting the rights of the last person, the last child.

We need to shift from seeing money and technology as masters in a new religion of money making, ”chrematistics,” to recognizing they are mere means that must be governed and regulated democratically for higher ecological and human ends.

We need to shift from extractivism as the basis of the economy to solidarity and giving as the basis of circular, solidarity economies of permanence.

We need to shift from enclosure of the commons by the 1 % to recovery of the commons for the common good and well being of all.

Humanity must opt for staying alive by caring for our common home, the Earth and each other, rejuvenating the Planet, and through it sowing the seeds of our common future.

“Only as one earth community and one humanity, united in our diversities, can we hold ourselves together and step away from the precipice, and escape the destructive, ecocidal, genocidal rule of the 1% and the hallucinations of the mechanical mind. The 1% have brought us to this point, like sheep to slaughter. But we can turn around and walk away, to our freedom. To live free. To think free. To breathe free. To eat free. Seeding the Future is in our minds, our hearts, our hands.”

(Oneness vs 1% – Shattering Illusions, Seeding Freedom, Women Unlimited, New Internationalist, Il pianeta di tutti – Come il capitalismo ha colonizzato la Terra, Fetrinelli, El Planeta es de todos: Unidad contra el 1%, Editorial Popular, 1 % – Reprendre le pouvoir face à la toute-puissance des riches, Rue de l’échiquier)

References:

[1] https://www.trtworld.com/magazine/was-bolivia-s-coup-over-lithium-32033

[2] https://www.commondreams.org/news/2019/11/11/bolivian-coup-comes-less-week-after-morales-stopped-multinational-firms-lithium-deal

[3] http://www.navdanya.org/newsite/index.php?option=com_k2&view=item&id=343:universal-declaration-of-the-rights-of-mother-earth&Itemid=214&tmpl=component&print=1

[4] (Pg 116  Terry Gibbs, Why the Dalai Lama is a Socialist)

[5] (Source: https://theshiftproject.org/wp-content/uploads/2019/07/2019-02.pdf)

Reposted with permission from Navdanya