‘Regenerative Agriculture and the Soil Carbon Solution’: New Paper Outlines Vision for Climate Action

A white paper out Friday declares that “there is hope right beneath our feet” to address the climate crisis as it touts regenerative agriculture as a “win-win-win” solution to tackling runaway carbon emissions.

“Humans broke the planet with grave agricultural malpractice,” Tom Newmark, chairman of The Carbon Underground and a contributor to the research, said in a statement. “With this white paper, Rodale Institute shows us how regenerative agriculture has the potential to repair that damage and actually reverse some of the threatening impacts of our climate crisis.”

“This is a compelling call to action!” he added.

Released by the Rodale Institute and entitled Regenerative Agriculture and the Soil Carbon Solution (pdf), the white paper discusses how a transformation of current widespread agricultural practices—which now contribute indirectly and directly to the climate crisis—”can be rolled out tomorrow providing multiple benefits beyond climate stabilization.”

The findings are based on Rodale’s own trials, research data, and interviews with experts, and build upon the institute’s 2014 paper Regenerative Organic Agriculture and Climate Change: A Down-to-Earth Solution to Global Warming.

The claim made in the new paper is bold: “Data from farming and grazing studies show the power of exemplary regenerative systems that, if achieved globally, would drawdown more than 100% of current annual CO2 emissions.”

Regenerative agriculture, as the researchers describe, represents “a system of farming principles that rehabilitates the entire ecosystem and enhances natural resources, rather than depleting them.”

In contrast to industrial practices dependent upon monocultures, extensive tillage, pesticides, and synthetic fertilizers, a regenerative approach uses, at minimum, seven practices which aim to boost biodiversity both above and underground and make possible carbon sequestration in soil.

  • Diversifying crop rotations
  • Planting cover crops, green manures, and perennials
  • Retaining crop residues
  • Using natural sources of fertilizer, such as compost
  • Employing highly managed grazing and/or integrating crops and livestock
  • Reducing tillage frequency and depth
  • Eliminating synthetic chemicals

While passers-by may easily spot visual differences above ground between the divergent agricultural approaches, what’s happening below ground is also vital. From the paper:

Contrary to previous thought, it’s not the recalcitrant plant material that persists and creates long-term soil carbon stores, instead it’s the microbes who process this plant matter that are most responsible for soil carbon sequestration. Stable soil carbon is formed mostly by microbial necromass (dead biomass) bonded to minerals (silt and clay) in the soil. Long term carbon storage is dependent on the protection of the microbially-derived carbon from decomposition.

As for claims such as agricultural transformation wouldn’t be able to produce enough food, the paper counters: “Actual yields in well-designed regenerative organic systems, rather than agglomerated averages, have been shown to outcompete conventional yields for almost all food crops including corn, wheat, rice, soybean, and sunflower.”

But that is far from the only benefit. “When compared to conventional industrial agriculture,” the authors write, “regenerative systems improve”:

  • Biodiversity abundance and species richness
  • Soil health, including soil carbon
  • Pesticide impacts on food and ecosystems
  • Total farm outputs
  • Nutrient density of outputs
  • Resilience to climate shocks
  • Provision of ecosystem services
  • Resource use efficiency
  • Job creation and farmworker welfare
  • Farm profitability
  • Rural community revitalization

Rather than framing it as a “wake-up call,” the institute says the paper should be seen as an “invitation to journey in a new direction.”

“It is intended to be both a road map to change and a call to action to follow a new path,” the authors write. “One led by science and blazed by farmers and ranchers across the globe.”

“Together we both sound the alarm and proclaim the regenerative farming solution: It’s time to start our journey with a brighter future for our planet and ourselves as the destination,” the paper states.

Resources accompanying the white paper include a sample letter to members of Congress to urge support for the Agriculture Resilience Act (H.R. 5861), introduced in February by Rep. Chellie Pingree (D-Maine), and a “buyer’s guide to regenerative food” to help decipher food labels and questions to ask suppliers at farmers’ markets.

“A vast amount of data on the carbon sequestration potential of agricultural soils has been published, including from Rodale Institute, and recent findings are starting to reinforce the benefits of regenerative agricultural practices in the fight against the climate crisis,” said Dr. Andrew Smith, COO and chief scientist of Rodale Institute.

Reposted with permission from Common Dreams

Regenerative Ranching Could Solve Climate Change

A new study from Oregon State University shows regenerative ranching increases adaptability and socioeconomic status while helping to mitigate climate change.   

Climate Reality Project describes regenerative agriculture as a system of farming principles and practices that seeks to rehabilitate and enhance the entire ecosystem of the farm by placing a heavy premium on soil health with attention also paid to water management, fertilizer use, and more.   

According to Regeneration International, this method can help to reverse climate change as it works to rebuild organic matter and restore biodiversity to the soil.   

Regenerative ranching refers to the practices familiar to most of us as organic farming. These changes are brought about by using a dynamic and holistic approach, including organic farming techniques such as cover cropscrop rotationsno till and compost. These practices encourage carbon sequestration, and can dramatically affect the climate in extremely positive ways.   

KEEP READING ON THE CORVALLIS ADVOCATE

The Importance of a Regenerative Food System for Sustainable Agriculture

A regenerative food system focuses on feeding humanity without depleting the Earth. It is a holistic systems approach, stressing the importance of finding solutions that address problems collectively.

There is no single definition of regenerative agriculture, but most people agree that regenerative farming includes things such as no-till farming, cover crops, perennial and native plants, integrated livestock and crop diversity. Building a regenerative food system is vital to feeding humanity while also repairing damaged ecosystems. In the face of climate change, a regenerative food system will create resiliency by localizing economies, sequestering carbon and building greater food security.

Carbon Sequestration

One of the main benefits of a regenerative food system is the ability to sequester carbon. Agriculture is a top contributor to greenhouse gas emissions, and industrialized agriculture has a serious carbon footprint. Soil erosion and nutrient depletion are also two common side effects of conventional agriculture.

Utilizing techniques such as cover crops and no-till growing help sequester carbon, keeping carbon in the soil instead of releasing it into the atmosphere.

KEEP READING ON RED GREEN AND BLUE

Cattle Might Be Secret Weapon in Fight Against Wildfires, Experts Say. Here’s How

Evidence shows that wildfires have become more widespread and severe over the years, with the ongoing West Coast blazes bearing testament to the worrying trend.

Firefighters and farmers have tricks of their own to prevent fires from sparking and to contain them enough for successful defeat. But there might be a secret weapon that hasn’t been getting the attention it deserves.

Cattle.

Researchers with the University of California Cooperative Extension set out to evaluate how much fine fuel — grasses and other plants known to start fires — cattle eat and how their feeding behavior affects flame activity.

The team concluded that without cattle grazing, there would be “hundreds to thousands” of additional pounds of fine fuels per acre of land, which could lead to “larger and more severe fires.”

The team’s study results have yet to be published, but they offered their preliminary findings in a blog post published Aug. 31.

KEEP READING ON THE SACRAMENTO BEE

Why Healthy Soil Means A Healthier Planet

Dirt, it turns out, has been underestimated. Healthy soil is perhaps the most essential part of a thriving ecosystem. In the face of climate change, farmers and scientists are working to better understand how soil supports a healthy planet. It turns out that without it, the rest of an ecosystem suffers.

Soil is composed of various materials, including sand, silt, stone and water. Depending on the geographic location, it can be sandy, dense, rocky or porous. Soil is a living thing and composed of millions of tiny organisms that help keep it healthy. Different types of insects, bacteria and fungi all work together to keep things in balance. Fungal networks, known as mycelium, play a vital role in helping dirt communicate with plant roots. In fact, the largest known organism in the world is a fungus that covers 4 square miles of forest in the Pacific Northwest.

Modern farming practices, land development and pollution are threatening the health of our planet.

KEEP READING ON THE ENVIRONMENTAL MAGAZINE

Perennial Vegetables Are a Solution in the Fight Against Hunger and Climate Change

Marisha Auerbach’s home garden is an edible landscape. Archways of table and wine grapes shade the entry while tree kales, tree collards, and stinging nettles dot the pathway. Auerbach, a permaculture teacher at Oregon State University, and her partner, Zane Ingersoll, estimate roughly 80 percent of their diet comes from this 6,600-square-foot lot in Portland. About 60 percent of the garden is perennial plants, trees, and shrubs—meaning they grow all year long and don’t need to be replanted or reseeded the following year.

Perennial agriculture—including agroforestrysilvopasture, and the development of perennial row crops such as Kernza—has come to prominence in recent years as an important part of the fights against soil erosion and climate change. Not only do perennial plants develop longer, more stabilizing roots than annual crops, but they’ve also been shown to be key to sequestering carbon in the soil.

Now, a new study in the journal PLoS ONE is pointing to vegetables like the ones in Auerbach’s garden as another important addition to the list.

KEEP READING ON CIVIL EATS

Fungi Have Unexpected Role to Play in Fight Against Climate Change

TAIPEI (Taiwan News) — Planting more trees seems like a logical way of counteracting climate change, as forests facilitate carbon sequestration, the process of capturing and storing atmospheric carbon dioxide (CO2), but as efforts to remove CO2 from the atmosphere intensify, organisms from another kingdom — fungi — are showing they have an indispensable role to play in this process.

“Almost all plant life coexists with fungi during a certain period, if not the entire life cycle of a plant, but the reasons for this coexistence and its effects have not yet been fully deciphered,” said Ko-Hsuan “Koko” Chen, an assistant research fellow at Academia Sinica’s Biodiversity Research Center. Her lab studies plant-fungal symbiosis, especially between fungi and early photosynthetic organisms such as mosses.

Funguses are commonly used as ingredients in food and in medicines. However, their dynamic relationship with plants is not so well known and is significantly tied to the prosperity of plant species and element cycles, which are defined as the biogeochemical pathways in which elements are transformed by natural processes.

KEEP READING ON TAIWAN NEWS

The Al Baydha Project: How Regenerative Agriculture Revived Green Life in a Saudi Arabian Desert

Al Baydha is an area in western Saudi Arabia, about 20 miles south of Mecca.  It comprises nine villages inside of roughly 700 kilometers, and its inhabitants are Beduin tribes, who in centennial nomadic tradition, used to move across the land with the rainfall.  This, and other traditional land management methods used in the Arabian Peninsula, allowed the land to stay green for pasture; essential for the animals which are the basis for Beduin economy. But in the 1950s, those traditional systems were abolished.

The Beduin were obliged by law to settle in one area, a change that caused overgrazing and the gradual disappearance of native pasture.  The community was obliged to buy barley and hay for feed. To meet expenses, they chopped trees down for sale as charcoal.  Soon, the once-fertile land was nothing but rocky desert. Wells had to be dug further down to reach water, as the scant seasonal rains, with nothing to contain the water on the land, made flash floods that rolled away to the Dead Sea instead of seeping into the soil to replenish reserves.

KEEP READING ON GREEN PROPHET

Unlocking the Potential of Soil Can Help Farmers Beat Climate Change

Farmers are the stewards of our planet’s precious soil, one of the least understood and untapped defenses against climate change. Because of its massive potential to store carbon and foundational role in growing our food supply, soil makes farming a solution for both climate change and food security.

The threat to food security

Farming is capital-intensive and farmers are at the mercy of volatile global commodity markets, trade disputes, regulatory changes, weather, pests, and disease. Factor in climate change and you can include droughts, floods and temperature shifts.

We need to change how we grow our food because:

  • climate change will increasingly impact farm yields
  • how we farm can help mitigate climate change
  • helping our farmers unlock the full potential of soil will help them meet growing food demands while remaining profitable
  • restoring the carbon-holding potential of our soil combats climate change.

Soil and climate change

The last few years have been among the hottest on record. As of May 2020, the concentration of carbon dioxide (CO2)​​​​​​​ in our atmosphere has been the highest it’s been in human history.

Waiter, There’s a Problem with My Paradigm!

This article is part of the #CuraDaTerra essay series, focused on Indigenous perspectives and alternatives to industrial capitalism.

Certain humans have plotted for centuries to kill the Amazon.  Photographic evidence confirms that this scheme is now reaching a flaming, thundering crescendo, with tens of thousands of intentional fires and bulldozers tearing through the Amazonian rainforest, destroying acres every second.

We hasten to add that other humans are innocent bystanders, while yet other humans go further and have a plan to save that vast ecosystem.

But we have gotten well ahead of our story; first let’s enjoy a delicious bowl of peach-palm soup. For us, the soup’s richness dominates the culinary experience.  In both aroma and color there is a suggestion of squash, but that hint of sweet flavor is secondary to the dense, opulent texture that coats one’s mouth like whipped butter.

Or when we’re ravenous and need survival calories, we just stew the fruits in salted water, peel them, and eat what seems like the world’s finest roasted chestnut.

KEEP READING ON KOSMOS JOURNAL