Tag Archive for: Soil Carbon Sequestration

Back to Grass: The Market Potential for US Grassfed Beef

Authors: Donny Benz, Renee Cheung, Rosalie Kissel, Paul McMahon and Erik Norel | Published: April 2017 

Grassfed beef in the U.S. is a fast-growing consumer phenomenon that is starting to attract the attention of more cattle producers and food companies, but there is a lack of coherent information on how the market works. While the U.S. Department of Agriculture (USDA) produces a vast body of data on the conventional beef sector, its data collection and reporting efforts on grassfed beef are spotty. Pockets of information are held by different private sector organizations, but they have rarely been brought together.

This report addresses that gap by providing a comprehensive overview of the U.S. grassfed beef sector, with a focus on market and economic dynamics. It brings together available data on the current state of the sector, identifies barriers to growth and highlights actions that will help propel further expansion. It analyzes consumer demand, supply chains and both domestic and imported grassfed beef production models, all the while comparing grassfed beef with conventional beef to highlight their differences.

The report tries to answer some fundamental questions about the future of the sector. How do we define “grassfed beef”? Does it matter how restrictive this definition is? Is grassfed beef destined to remain a niche, expensive product for the affluent consumer? Or can grassfed beef scale to the point where it displaces a significant portion of the conventional, grain-fed beef system in the U.S.?

READ THE FULL REPORT HERE

Hope Below Our Feet: Soil as a Climate Solution

Authors: Anne-Marie Codur, Seth Itzkan, William Moomaw, Karl Thidemann, and Jonathan Harris | Published: April 2017 

Can the world meet the ambitious goals necessary to avoid catastrophic climate change? A major reduction in greenhouse gas emissions is clearly needed, but there is increasing scientific consensus that even if achieved, this will not be enough. In addition to a drastic reduction in carbon emissions, carbon must be removed from the atmosphere. An important solution is beneath our feet – the massive capacity of the earth’s soils to remove and store carbon from the atmosphere.

Soils hold about three times more carbon than the atmosphere, and an increase in soil carbon content worldwide could close the “emissions gap” between carbon dioxide reductions pledged at the Paris Agreement of 2015 and those deemed necessary to limit warming to 2 o C or less by 2100. To meet this challenge, several international efforts to build soil carbon have been launched, with similar measures underway in the United States.

Proposed policies include reforestation and innovative farming, ranching, and land management approaches that will enhance degraded soil and restore its carbon stock. The French-initiated effort, 4 per 1000: Soils for Food Security and Climate, introduced to coincide with the Paris Agreement, calls for an annual increase of 0.4% in annual global soil carbon storage which, if achieved, would amount to nearly one third of total anthropogenic emissions. This brief also addresses other international soil carbon enhancement initiatives and legislation considered or enacted in US states.

READ THE FULL POLICY BRIEF HERE 

Make Our Soil Great Again

Author: David R. Montgomery | Published: April 14, 2017 

Most of us don’t think much about soil, let alone its health. But as Earth Day approaches, it’s time to recommend some skin care for Mother Nature. Restoring soil fertility is one of humanity’s best options for making progress on three daunting challenges: Feeding everyone, weathering climate change and conserving biodiversity.

Widespread mechanization and adoption of chemical fertilizers and pesticides revolutionized agriculture. But it took a hidden toll on the soil. Farmers around the world have already degraded and abandoned one-third of the world’s cropland. In the United States, our soils have already lost about half of the organic matter content that helped make them fertile.

What is at stake if we don’t reverse this trend? Impoverished trouble spots like Syria, Libya and Iraq are among the societies living with a legacy of degraded soil. And if the world keeps losing productive farmland, it will only make it harder to feed a growing global population.

But it is possible to restore soil fertility, as I learned traveling the world to meet farmers who had adopted regenerative practices on large commercial and small subsistence farms while researching my new book, Growing A Revolution: Bringing Our Soil Back to Life. From Pennsylvania to the Dakotas and from Africa to Latin America, I saw compelling evidence of how a new way of farming can restore health to the soil, and do so remarkably fast.

These farmers adopted practices that cultivate beneficial soil life. They stopped plowing and minimized ground disturbance. They planted cover crops, especially legumes, as well as commercial crops. And they didn’t just plant the same thing over and over again. Instead they planted a greater diversity of crops in more complex rotations. Combining these techniques cultivates a diversity of beneficial microbial and soil life that enhances nutrient cycling, increases soil organic matter, and improves soil structure and thereby reduces erosive runoff.

Farmers who implemented all three techniques began regenerating fertile soil and after several years ended up with more money in their pocket. Crop yields and soil organic matter increased while their fuel, fertilizer, and pesticide use fell. Their fields consistently had more pollinators — butterflies and bees — than neighboring conventional farms. Using less insecticide and retaining native plants around their fields translated into more predatory species that managed insect pests.

Innovative ranchers likewise showed me methods that left their soil better off. Cows on their farms grazed the way buffalo once did, concentrating in a small area for a short period followed by a long recovery time. This pattern stimulates plants to push sugary substances out of their roots. And this feeds soil life that in return provides the plants with things like growth-promoting hormones and mineral nutrients. Letting cows graze also builds soil organic matter by dispersing manure across the land, rather than concentrating it in feedlot sewage lagoons.

KEEP READING ON THE CONVERSATION 

Farmers Can Profit Economically and Politically by Addressing Climate Change

Author: Matthew Russell | Date Published: April 4, 2017 

President Trump, congressional Republicans and most American farmers share common positions on climate change: They question the science showing human activity is altering the global climate and are skeptical of using public policy to reduce greenhouse gas pollution.

But farmers are in a unique position to tackle climate change. We have the political power, economic incentive and policy tools to do so. What we don’t yet have is the political will.

As a fifth-generation Iowa farmer and the resilient agriculture coordinator at the Drake University Agricultural Law Center, I deal with both the challenges and opportunities of climate change. I also see a need for the agriculture community to make tough choices about its policy priorities in the face of dramatic political shifts in Washington.

Pundits, agriculture groups and President Trump have identified farmers as a key demographic in the Republican victory. How we leverage this influence remains to be seen. Trade and immigration policy and the president’s fiscal 2018 budget proposal are already creating disagreements between farmers and the Trump administration. We will need to be strategic in using our political power to shape agriculture policy.

My research and farming experience convince me that even in today’s unpromising political conditions, agriculture can play an important role in addressing climate change. American farmers can become global leaders in producing what the world needs as much as abundant food: a stable climate.

Farmers wrestle with climate change

Prior to 2009, thousands of farmers across the United States participated in two large-scale projects designed to maintain or increase carbon storage on farmlands: the National Farmers Union Carbon Credit Program and the Iowa Farm Bureau AgraGate program. These programs paid farmers for limiting the number of acres they tilled and for maintaining or establishing grasslands. Payments came through the Chicago Climate Exchange (CCX), a voluntary market in which businesses could buy and sell carbon credits.

But after Barack Obama became president in 2009, farmers overwhelmingly joined the opposition to climate change action. As agriculture journalist Chris Clayton documents in his 2015 book “The Elephant in the Cornfield,” farmers viewed Obama’s climate strategy – especially the push for cap-and-trade legislation in 2009-2010 – as regulatory overreach by a Democratic Congress and president.

For example, after the Environmental Protection Agency briefly mentioned livestock in a 2008 report on regulating greenhouse gases under the Clean Air Act, farmers and agriculture trade groups erupted in outrage at the prospect of a “cow tax” on methane releases from both ends of the animal. When Congress failed to enact the cap-and-trade bill in 2010, the CCX went out of business.

KEEP READING ON THE CONVERSATION 

A Crucial Climate Mystery Hides Just Beneath Your Feet

Author: Nathanael Johnson | Published: April 4, 2017

What Jonathan Sanderman really wanted was some old dirt. He called everyone he could think of who might know where he could get some. He emailed colleagues and read through old studies looking for clues, but he kept coming up empty.

Sanderman was looking for old dirt because it would let him test a plan to save the world. Soil scientists had been talking about this idea for decades: Farmers could turn their fields into giant greenhouse gas sponges, potentially offsetting as much as 15 percent of global fossil fuel emissions a year, simply by coaxing crops to suck more CO2 out of the air.

There was one big problem with this idea: It could backfire. When plants absorb CO2 they either turn it into food or stash it in the ground. The risk is that if you treat farms as carbon banks, it could lead to smaller harvests, which would spur farmers to plow more land and pump more carbon into the air than before.

Back in 2011, when Sanderman was working as a soil scientist in Australia (he’s now at Woods Hole Research Center in Massachusetts), he’d figured out a way to test if it was possible to produce bumper crops on a piece of land while also banking carbon in it. But first, he needed to get his hands on that really old dirt.

Specifically, he needed to find a farm that kept decades of soil samples and precise records of its yields. That way he could compare the amount of carbon in the soil with the harvest and see if storing carbon kneecapped production.

Sanderman’s office was in the southern city of Adelaide, directly across the street from the Waite Agricultural Research Institute. The researchers there supposedly had the soil and records that Sanderman needed, dating back to 1925. But no one had any idea where to find the dirt. After numerous dead ends, a chain of clues led Sanderman into the basement of a big research building down the road, covered in greenhouses.

The basement was a big, dimly lit room full of floor-to-ceiling shelves crammed with boxes in various stages of disarray. He walked the rows slowly, scanning up and down until they were in front of his nose: scores of gallon jars made of thick, leaded glass with yellowing labels. “Like something you’d find in a second-hand store and put on your shelf,” Sanderman says.

He felt a rush of excitement. Then he squinted at the labels. There were no dates or locations. Instead, each bore a single series of numbers. It was a code, and Sanderman had no clue how to crack it.

The question that Sanderman wanted to answer was laid out by the Canadian soil scientist Henry Janzen. In 2006, Janzen published a paper, “The soil carbon dilemma: Shall we hoard it or use it?” Janzen pointed out that since the dawn of agriculture, farmers have been breeding crops that suck carbon out of the air and put it on our plates, rather than leaving it behind in the soil.

“Grain is 45 percent carbon by weight,” Janzen told me. “So when you truck away a load of grain, you are exporting carbon which, in a natural system, would have mostly returned to the soil.”

Janzen has the rare ability to explain complicated things with such clarity that, when talking to him, you may catch yourself struck with wonder at an utterly new glimpse of how the world works. Plants, he explained, perform a kind of alchemy. They combine air, water, and the sun’s fire to make food. And this alchemical combination that we call food is, in fact, a battery—a molecular trap for the sun’s energy made of broken-down CO2 and H2O (you know, air and water).

Sugars are the simplest batteries. And sugars are also the building blocks for fat and fiber, which are just bigger, more complicated batteries. Ferns, trees, and reeds are the sum of those parts. Bury these batteries for thousands of years under conditions of immense heat and pressure, and they transform again—still carrying the sun’s energy—into coal, oil, and gas.

KEEP READING ON WIRED

Local Farmers Sowing Seeds of Carbon Farming

Author: Stephanie Hiller | Published: April 5, 2017 

This year, the third warmest in recorded history, spring has come a month early, with regions all across the United States experiencing May temperatures in March. While warmer temperatures are welcome after a cold, wet winter, the cause is not.

Oceans are warming and rising, and last year was the fourth consecutive year of mass seal pup strandings along local beaches due to reduced populations of anchovies and sardines. Glaciers are melting and collapsing at record rates. Heat waves and fires are likely to threaten our placid summers. Worse disasters loom in our children’s future.

Despite what the Trump administration says, climate change is here. As Naomi Klein pointed out in a 2011 article in The Nation, climate deniers know its consequences full-well: Addressing climate change means not only ending the flow of their black gold—it’s the end of their entire way of life.

“To lower global emissions,” she writes, “can only be done by radically reordering our economic and political systems in many ways antithetical to their ‘free market belief system.’” Hence, oil companies have invested billions to convince much of the voting public that climate change is a hoax and accomplished the ultimate coup d’état with the installation of a like-minded government that will raise the temperature, and the consequences, even more.

But we still have a chance to pull back from our race to the edge. There is a climate-change solution that can take root at the local level which can actually reverse climate change by at least 40 percent. By changing the way we grow food, we can actually draw down carbon from the atmosphere and put it to good use where it belongs: In the soil. Call it carbon farming.

Healthy Soils

North Bay farmers have led the way with these techniques, and with the help of climate-advocacy groups, they won state support to promote a program that just might save the world.

The California Healthy Soils Initiative (CHSI), launched on January 11 in Sacramento by the National Resource Conservation Service and the California Department of Food and Agriculture, encourages farmers to adopt carbon-friendly farming methods by offering grants and training assistance. Grant applications will be accepted later this spring.

Judging from the number of people who turned out for the September “Building Partnerships on Healthy Soil” summit—more than 200 for the conference itself and many more via webcast—interest in this carbon-friendly “regenerative” soil-management program is growing. It can’t come too soon: The very existence of topsoil is at risk.

The World Wildlife Fund reports that more than half of the topsoil worldwide has been lost over the past 150 years, mostly due to industrial agriculture. Some sources say that the loss is more like 70 percent. It’s possible that in 60 years, the topsoil on heavily grazed and monocropped farmlands will be gone, leaving nothing but an impervious layer of hardpan in its place, conditions that led to the Dust Bowl phenomenon in parts of the United States and Canada in the 1930s. Without its thin skin of topsoil, fertile land turns to desert, a process that has been accelerating all over the world in large part because of intensive industrial agriculture.

But David Runsten, policy director of the Community Alliance with Family Farmers (CAFF), says that agriculture can be part of the solution. He began working with the California Climate and Agriculture Network (CalCAN), a nonprofit that advocates for climate-friendly agricultural policy, in 2009 to get state officials to embrace carbon farming.

“Finally, the governor said he would support Healthy Soils,” Runsten says.

The legislation passed last summer and allocates $7.5 million for the program, $3 million for demonstration projects and up to $4 million in grants of up to $25,000. Governor Brown is sold on the program. He originally asked for $20 million once he embraced the idea.

Funding for the program comes from the California Air Resources Board’s Cap-and-Trade Program.

California’s Cap-and-Trade Program generates money from big emitters who are required to buy permits to emit greenhouse gases, says Renata Brillinger, executive director of CalCAN.

“The Legislature and the governor decide how much [of that] money to spend and on what,” Brillinger says. “It’s billions of dollars that we can influence through a democratic process.”

Healthy Soils projects must be directly linked to climate change, she says. “Farmers are getting money to do things on their farm that draws down carbon or reduces emissions. It is the only source of funding in the United States that will pay farmers to do that.”

One of the pioneers of carbon farming is the Marin Carbon Project (MCP). The nonprofit took it upon itself to provide scientific evidence to substantiate the benefits of carbon farming. Working in concert with Whendee Silver, professor of environmental science, policy, and management at U.C. Berkeley, the MCP found that adding a half-inch of compost to the soil increased soil carbon by one ton, or 40 percent, per hectare.

Most dazzling was the discovery that the amount continued to increase by the same rate year after year without adding more compost. This research demonstrated that carbon farming “can improve on-farm productivity and viability, enhance ecosystem functions and stop and reverse climate change,” explains Torri Estrada, executive director of the Carbon Cycle Institute, a Petaluma-based organization partnered with the MCP.

The Carbon Cycle

Plants sequester carbon from atmospheric CO2 by photosynthesis, using the airborne carbon to create carbohydrates and relaying the excess sugars to microbes in the soil. In turn, microbes return carbon to the soil. The more microbes, the more carbon is taken up, the stronger the roots and the more productive and resilient the plant. Adding organic matter to the soil feeds the fungi and bacteria, and enhances the effect.

KEEP READING ON PACIFIC SUN 

Putting A Dollar Value On Ecosystems

Author: Mark Brodie | Published: April 15, 2017 

How do you put a dollar value on something that in some ways is priceless? Like the Mona Lisa? Or biodiversity?

Researchers in a new paper try to do just that — with one specific ecosystem service, provided by grasslands: soil carbon storage.

Bruce Hungate is the director of the Center for Ecosystem Science and Society at Northern Arizona University and lead author of a paper on the economic value of soil carbon storage. The paper was published in “Science Advances.” Mark Brodie from KJZZ interviewed researcher Bruce Hungate to learn more about how the study put a dollar value on soil carbon storage.

LISTEN TO THE INTERVIEW ON KJZZ 

Reconsider the Impact of Trees On Water Cycles and Climate, Scientists Ask

Published: March 20, 2016 

Forests and trees play a major role on water cycles and cooler temperatures, contributing to food security and climate change adaptation. In recent decades, the climate change discourse has looked at forests and trees mostly as carbon stocks and carbon sinks, but now scientists are calling for more attention on the relation between trees and water in climate change.

Scientists suggest that the global conversation on trees, forests and climate needs to be turned on its head: the direct effects of trees on climate through rainfall and cooling may be more important than their well-studied capacity of storing carbon. A new publication and a symposium try to shed new light on the debate.

The research paper Trees, forests and water: Cool insights for a hot world compiles older knowledge and new research findings pointing at the important effects of trees on helping to retain water on the ground and to produce cooling moisture, which in turn have a positive impact on food security and climate change adaptation.

Authors are also participating in a two-day virtual symposium hosted by FTA, the CGIAR Research Program on Forests, Trees and Agroforestry. On the occasion of the International Day of Forests (March 21) and World Water Day (March 22), this virtual symposium will serve to discuss the findings of the paper and to new areas of research about the linkages of forests with water and climate.

KEEP READING ON CIFOR

Soil Organic Carbon: The Hidden Potential

Published: March 21, 2017 

Warning of “colossal” negative impacts for the environment and human societies if the massive stores of carbon trapped in the Earth’s soils are released, Fijian president Jioji Konousi Konrote called for stronger management of this critical natural resource at the start of an international symposium today.

There is currently more carbon locked up in just the first meter of the planet’s soils than can be found in the atmosphere and all terrestrial plant life combined, he said during his keynote address to the Global Symposium on Soil Organic Carbon (21-23 March).

Referring to international commitments to limit global temperature rise to below 2 degrees Celsius made under the 2015 Paris Climate Agreement, Konrote warned: “If we fail to maintain our soils as a carbon reservoir, I am afraid that these discussions and negotiations would have been in vain.”

“We cannot afford to neglect a resource that could be our serious and viable ally against climate change,” he added.

Fiji and other small island developing states are on the front lines in the battle against climate change. The government of Fiji is poised to assume the presidency of the next Conference of Parties of the UN Climate Agreement that will take place in in Bonn, Germany, in November.

FAO Director-General Jose Graziano da Silva in his remarks stressed that beyond their critical role as a carbon sink, healthy soils underpin multiple environmental processes upon which humankind depends and which are the foundation of global food security.

KEEP READING ON RELIEF WEB 

Mitigation Update: Agriculture and Soil Management in the Spotlight

Author: Jennifer Allan | Published: March 23, 2017 

Recent news has put agriculture and soil management in the spotlight, as soil is shown as a crucial carbon reservoir, and agriculture is responsible for a significant share of New Zealand’s emissions. This Update features these and other developments, that relate to the Sustainable Development Goal (SDG) 13 (climate action).

Soil management could “make or break” climate change mitigation efforts, according to a report by the Food and Agriculture Organization of the UN (FAO). Plants and other organic residues absorb carbon and keep it in the soil, creating a reservoir of carbon, that, according to FAO, could be re-released back into the atmosphere by rising temperatures and other disturbances. The report recommends better information and good practices to help end hunger (SDG 2) while adapting to and mitigating climate change (SDG 13). The report was launched at the Global Symposium on Soil Organic Carbon where Fijian president Jioji Konousi Konrote warned that “if we fail to maintain our soils as a carbon reservoir, I am afraid that these discussions and negotiations [for the Paris Agreement] would have been in vain.” [FAO Report] [FAO Press Release]

To help countries develop agricultural strategies in the context of climate change, the UNFCCC and the FAO signed an agreement that facilitate the cooperation. The agreement will include policy advice, data sharing and promotion of access to knowledge by agricultural smallholders. It will also facilitate capacity building and sharing technical expertise between the staff of the UNFCCC, FAO and developing countries’ representatives.

KEEP READING ON IISD