Posts

Reversing Climate Change through Regenerative Agriculture

This year’s Acres U.S.A. Conference features numerous speakers, who can show how we can reverse the disruptive effects climate change by adopting best practice regenerative production systems. These systems will also make our farms and ranches more productive and resilient to the current erratic climate disruption that we are all facing.

The increasing erratic and disruptive weather events caused by climate change are the greatest immediate threat to viable farming and food security. We are already being adversely affected by the longer and more frequent droughts, and irregular, out-of-season and destructive rainfall events.

The world is already around 1.8 degrees Fahrenheit (1 degree Celsius) warmer than the industrial revolution. The energy needed to heat the atmosphere by 1.8 degrees is equivalent to billions of atomic bombs. I am using this violent metaphor so that people can understand how much energy is being released into our atmosphere and oceans and why we will get more frequent and stronger storms wreaking havoc in our communities.

This extra energy is violently fueling and disrupting our weather systems. It means storms are far more intense. Winter storms will be colder and can be pushed further south and north than normal due to this energy. Similarly, summer storms, especially hurricanes, cyclones, tornadoes, typhoons, tropical lows, etc., are far more intense with deluging destructive rainfall.

Droughts are more frequent and are resulting more frequent and damaging forest and grass fires that are changing the ecology due to not allowing time for recovery. The current intense northern hemisphere heatwave, global drought and unprecedented number of ferocity of forests fires are being exacerbated by climate change.

The frequency and intensity of these types of events will only get exponentially worse when the world warms to 3.6 degrees, which is the upper limit that the Paris climate meeting agreed to.

Some people don’t really care if the world is 3.6 degrees warmer — however it is not the average temperatures that are the concern, but rather the regular extremes, especially the out-of-season heatwaves and rain events, that we are experiencing now.

Managing Climate Change Now

Atmospheric CO2 levels have been increasing at 2 parts per million (ppm) per year. The level of COreached a new record of 400 ppm in May 2016. This is the highest level of CO2 in the atmosphere for 800,000 years. However, in 2016, despite all the commitments countries made in Paris in December 2015, the levels of CO2 increased at record levels in 2016 (3.3 ppm of COentered the atmosphere, creating a new record).

According to the World Meteorological Organization, “Geological records show that the current levels of COcorrespond to an ‘equilibrium’ climate last observed in the mid-Pliocene (3-5 million years ago), a climate that was 2-3 °C (3.6 – 5.4° F) warmer, where the Greenland and West Antarctic ice sheets melted and even some of the East Antarctic ice was lost, leading to sea levels that were 10-20 meters (30-60 feet) higher than those today.”

Global sea level rises will cause the atoll island countries, large parts of Bangladesh, Netherlands, coastal United States, New York, New Orleans, Miami, San Francisco/Bay Area, London, Manila, Bangkok, Jakarta, Shanghai, Singapore, Melbourne, Brisbane, Sydney, Perth and other low lying areas to go under water

Even if the world transitioned to 100 percent renewable energy tomorrow, this will not stop the temperature and sea level rises because it will take more than 100 years for the CO2levels to drop. These sea level rises will cause a huge refugee crisis for over a billion people by 2050 and throw our planet into chaos. The world cannot cope with 2 million refugees from Syria. How do we cope hundreds of millions of climate change refugees? There will be wars over food, water and land.

The fact is we have to speed up the transition to renewable energy and we have to make a great effort to draw down the COin the atmosphere.

The Solution Is Under Our Feet!

In order to stop the present increase in atmospheric CO2, agricultural systems would have to sequester 2.3 ppm of CO2 per year. Using the accepted formula that 1 ppm CO2 = 7.76 Gt CO2 means that 17.85 Gt of CO2 per year needs to be sequestered from the atmosphere and stored in the soil as soil organic carbon (SOC).

Stopping the increase in GHGs and then reducing them must be the first priority, and this should be non-negotiable. Moving to renewable energy and energy efficiency will not be enough to stop the planet from warming over the next hundred years and going into damaging climate change. The amount of 405 ppm is past the level needed to meet the Paris objective of limiting the temperature increase to +1.5/2°C (2.7/3.6° F). The levels need to be well below 350 ppm. The excess CO2 must be sequestered from the atmosphere to stop damaging climate change.

Soils are the greatest carbon sink after the oceans. There is a wide variability in the estimates of the amount of carbon stored in the soils globally. According to Professor Rattan Lal, there are over 2,700 gigatons (Gt) of carbon stored in soils. The soil holds more carbon than the atmosphere (848 Gt) and biomass (575 Gt) combined. There is already an excess of carbon in the oceans that is starting cause a range of problems. We cannot put any more CO2 in the atmosphere or the oceans. Soils are the logical sink for carbon.

Most agricultural systems lose soil carbon with estimates that agricultural soils have lost 50-70 percent of their original SOC pool, and the depletion is exacerbated by further soil degradation and desertification. Agricultural systems that recycle organic matter and use crop rotations can increase the levels of SOC. This is achieved through techniques such as longer rotations, ground covers, cover crops, green manures, legumes, compost, organic mulches, biochar, perennials, agro-forestry, agroecological biodiversity and livestock on pasture using sustainable grazing systems such as holistic grazing. These systems are starting to come under the heading of “regenerative agriculture” because they regenerate SOC.

Regenerative Agriculture Potential

BEAM (Biologically Enhanced Agricultural Management), is a process developed by Dr. David Johnson of New Mexico State University, that uses compost with a high diversity of soil microorganisms. BEAM has achieved very high levels of sequestration. According to Johnson et al., “… a 4.5 year agricultural field study promoted annual average capture and storage of 10.27 metric tons soil C ha-1 year -1 while increasing soil macro-, meso- and micro-nutrient availability offering a robust, cost-effective carbon sequestration mechanism within a more productive and long-term sustainable agriculture management approach.” These results have since been replicated in other trials.

Soil Organic Carbon x 3.67 = CO2 which means that 10.27 metric tons soil C ha-1 year -1 = 37.7 metric tons of CO2 per hectare per year. (38,000 pounds of CO2 per acre per year – close enough)

If BEAM was extrapolated globally across agricultural lands it would sequester 184 Gt of CO2/yr.

Regenerative Grazing

The Savory Institute, Gabe Brown and many others have been scaling up holistic management systems on every arable continent. There is now a considerable body of published science and evidence-based practices showing that these systems regenerate degraded lands, improve productivity, water holding capacity and soil carbon levels.

Nearly 70 percent of the world’s agricultural lands are used for grazing. The published evidence is showing that correctly managed pastures can build up SOC faster than many other agricultural systems and that it is stored deeper in the soil.

Research by Machmuller et al. 2015: “In a region of extensive soil degradation in the southeastern United States, we evaluated soil C accumulation for 3 years across a 7-year chronosequence of three farms converted to management-intensive grazing. Here we show that these farms accumulated C at 8.0 Mg ha−1 yr−1, increasing cation exchange and water holding capacity by 95 percent and 34 percent, respectively.”

To explain the significance of these figures: 8.0 Mg ha−1 yr−1 = 8,000 kgs of carbon being stored in the soil per hectare per year. Soil Organic Carbon x 3.67 = CO2, means that these grazing systems have sequestered 29,360 kgs (29.36 metric tons) of CO2/ ha/yr.

If these regenerative grazing practices were implemented on the world’s grazing lands they would sequester 98.5 gt CO2 per year.

Conclusion

Just transitioning 10 percent of agricultural production to best practice regenerative systems will sequester enough CO2 to reverse climate change and restore the global climate.

Ten percent of agricultural lands under BEAM would sequester 18.4 Gt of CO2/yr. Ten percent of grasslands under regenerative grazing would sequester 9.8 Gt of CO2/yr. This would result in 28.2 Gt of CO2/yr being sequestered into the soil which is just under double the amount of sequestration needed to draw out more CO2 than is currently being emitted.

These examples are shovel-ready solutions as they are based on existing practices. There is no need to invest in expensive, potentially dangerous and unproven technologies such as carbon capture and storage or geo-engineering. All that is needed is to scale up the existing good regenerative agriculture practices.

The real goods news is that these systems will make our farms and ranches more resilient and productive.

Regenerative agriculture can change agriculture from being a major contributor to climate change to becoming a major solution. The widespread adoption of these systems should be made the highest priority by farmers, ranchers, governments, international organizations, industry and climate change organizations.

André Leu is international director of Regeneration International. He is a longtime farmer in Australia and past president of the International Federation of Organic Agricultural Movements. He is the author of The Myths of Safe Pesticides and Poisoning Our Children, published by Acres U.S.A.

Reversing Climate Change through Regenerative Agriculture

This year’s Acres U.S.A. Conference features numerous speakers, who can show how we can reverse the disruptive effects climate change by adopting best practice regenerative production systems. These systems will also make our farms and ranches more productive and resilient to the current erratic climate disruption that we are all facing.

The increasing erratic and disruptive weather events caused by climate change are the greatest immediate threat to viable farming and food security. We are already being adversely affected by the longer and more frequent droughts, and irregular, out-of-season and destructive rainfall events.

Photo credit: Pixabay

 

The world is already around 1.8 degrees Fahrenheit (1 degree Celsius) warmer than the industrial revolution. The energy needed to heat the atmosphere by 1.8 degrees is equivalent to billions of atomic bombs. I am using this violent metaphor so that people can understand how much energy is being released into our atmosphere and oceans and why we will get more frequent and stronger storms wreaking havoc in our communities.

This extra energy is violently fueling and disrupting our weather systems. It means storms are far more intense. Winter storms will be colder and can be pushed further south and north than normal due to this energy. Similarly, summer storms, especially hurricanes, cyclones, tornadoes, typhoons, tropical lows, etc., are far more intense with deluging destructive rainfall.

Droughts are more frequent and are resulting more frequent and damaging forest and grass fires that are changing the ecology due to not allowing time for recovery. The current intense northern hemisphere heatwave, global drought and unprecedented number of ferocity of forests fires are being exacerbated by climate change.

The frequency and intensity of these types of events will only get exponentially worse when the world warms to 3.6 degrees, which is the upper limit that the Paris climate meeting agreed to.

Some people don’t really care if the world is 3.6 degrees warmer — however it is not the average temperatures that are the concern, but rather the regular extremes, especially the out-of-season heatwaves and rain events, that we are experiencing now.

Managing climate change now

Atmospheric CO2 levels have been increasing at 2 parts per million (ppm) per year. The level of COreached a new record of 400 ppm in May 2016. This is the highest level of CO2 in the atmosphere for 800,000 years. However, in 2016, despite all the commitments countries made in Paris in December 2015, the levels of CO2 increased at record levels in 2016 (3.3 ppm of COentered the atmosphere, creating a new record).

According to the World Meteorological Organization, “Geological records show that the current levels of COcorrespond to an ‘equilibrium’ climate last observed in the mid-Pliocene (3-5 million years ago), a climate that was 2-3 °C (3.6 – 5.4° F) warmer, where the Greenland and West Antarctic ice sheets melted and even some of the East Antarctic ice was lost, leading to sea levels that were 10-20 meters (30-60 feet) higher than those today.”

Global sea level rises will cause the atoll island countries, large parts of Bangladesh, Netherlands, coastal United States, New York, New Orleans, Miami, San Francisco/Bay Area, London, Manila, Bangkok, Jakarta, Shanghai, Singapore, Melbourne, Brisbane, Sydney, Perth and other low lying areas to go under water

Even if the world transitioned to 100 percent renewable energy tomorrow, this will not stop the temperature and sea level rises because it will take more than 100 years for the CO2levels to drop. These sea level rises will cause a huge refugee crisis for over a billion people by 2050 and throw our planet into chaos. The world cannot cope with 2 million refugees from Syria. How do we cope hundreds of millions of climate change refugees? There will be wars over food, water and land.

The fact is we have to speed up the transition to renewable energy and we have to make a great effort to draw down the COin the atmosphere.

The solution is under our feet!

In order to stop the present increase in atmospheric CO2, agricultural systems would have to sequester 2.3 ppm of CO2 per year. Using the accepted formula that 1 ppm CO2 = 7.76 Gt CO2 means that 17.85 Gt of CO2 per year needs to be sequestered from the atmosphere and stored in the soil as soil organic carbon (SOC).

Stopping the increase in GHGs and then reducing them must be the first priority, and this should be non-negotiable. Moving to renewable energy and energy efficiency will not be enough to stop the planet from warming over the next hundred years and going into damaging climate change. The amount of 405 ppm is past the level needed to meet the Paris objective of limiting the temperature increase to +1.5/2°C (2.7/3.6° F). The levels need to be well below 350 ppm. The excess CO2 must be sequestered from the atmosphere to stop damaging climate change.

Soils are the greatest carbon sink after the oceans. There is a wide variability in the estimates of the amount of carbon stored in the soils globally. According to Professor Rattan Lal, there are over 2,700 gigatons (Gt) of carbon stored in soils. The soil holds more carbon than the atmosphere (848 Gt) and biomass (575 Gt) combined. There is already an excess of carbon in the oceans that is starting cause a range of problems. We cannot put any more CO2 in the atmosphere or the oceans. Soils are the logical sink for carbon.

Most agricultural systems lose soil carbon with estimates that agricultural soils have lost 50-70 percent of their original SOC pool, and the depletion is exacerbated by further soil degradation and desertification. Agricultural systems that recycle organic matter and use crop rotations can increase the levels of SOC. This is achieved through techniques such as longer rotations, ground covers, cover crops, green manures, legumes, compost, organic mulches, biochar, perennials, agro-forestry, agroecological biodiversity and livestock on pasture using sustainable grazing systems such as holistic grazing. These systems are starting to come under the heading of “regenerative agriculture” because they regenerate SOC.

Regenerative agriculture potential

BEAM (Biologically Enhanced Agricultural Management), is a process developed by Dr. David Johnson of New Mexico State University, that uses compost with a high diversity of soil microorganisms. BEAM has achieved very high levels of sequestration. According to Johnson et al., “… a 4.5 year agricultural field study promoted annual average capture and storage of 10.27 metric tons soil C ha-1 year -1 while increasing soil macro-, meso- and micro-nutrient availability offering a robust, cost-effective carbon sequestration mechanism within a more productive and long-term sustainable agriculture management approach.” These results have since been replicated in other trials.

Soil Organic Carbon x 3.67 = CO2 which means that 10.27 metric tons soil C ha-1 year -1 = 37.7 metric tons of CO2 per hectare per year. (38,000 pounds of CO2 per acre per year – close enough)

If BEAM was extrapolated globally across agricultural lands it would sequester 184 Gt of CO2/yr.

Regenerative grazing

The Savory Institute, Gabe Brown and many others have been scaling up holistic management systems on every arable continent. There is now a considerable body of published science and evidence-based practices showing that these systems regenerate degraded lands, improve productivity, water holding capacity and soil carbon levels.

Nearly 70 percent of the world’s agricultural lands are used for grazing. The published evidence is showing that correctly managed pastures can build up SOC faster than many other agricultural systems and that it is stored deeper in the soil.

Research by Machmuller et al. 2015: “In a region of extensive soil degradation in the southeastern United States, we evaluated soil C accumulation for 3 years across a 7-year chronosequence of three farms converted to management-intensive grazing. Here we show that these farms accumulated C at 8.0 Mg ha−1 yr−1, increasing cation exchange and water holding capacity by 95 percent and 34 percent, respectively.”

To explain the significance of these figures: 8.0 Mg ha−1 yr−1 = 8,000 kgs of carbon being stored in the soil per hectare per year. Soil Organic Carbon x 3.67 = CO2, means that these grazing systems have sequestered 29,360 kgs (29.36 metric tons) of CO2/ ha/yr.

If these regenerative grazing practices were implemented on the world’s grazing lands they would sequester 98.5 gt CO2 per year.

Conclusion

Just transitioning 10 percent of agricultural production to best practice regenerative systems will sequester enough CO2 to reverse climate change and restore the global climate.

Ten percent of agricultural lands under BEAM would sequester 18.4 Gt of CO2/yr. Ten percent of grasslands under regenerative grazing would sequester 9.8 Gt of CO2/yr. This would result in 28.2 Gt of CO2/yr being sequestered into the soil which is just under double the amount of sequestration needed to draw out more CO2 than is currently being emitted.

These examples are shovel-ready solutions as they are based on existing practices. There is no need to invest in expensive, potentially dangerous and unproven technologies such as carbon capture and storage or geo-engineering. All that is needed is to scale up the existing good regenerative agriculture practices.

The real goods news is that these systems will make our farms and ranches more resilient and productive.

Regenerative agriculture can change agriculture from being a major contributor to climate change to becoming a major solution. The widespread adoption of these systems should be made the highest priority by farmers, ranchers, governments, international organizations, industry and climate change organizations.

André Leu is international director of Regeneration International. He is a longtime farmer in Australia and past president of the International Federation of Organic Agricultural Movements. He is the author of The Myths of Safe Pesticides and Poisoning Our Children, published by Acres U.S.A.

Reposted with permission from Eco-Farming Daily.

Soils Ain’t Soils

The world-renowned Andre Leu gave a fascinating insight recently in his presentation on regenerative agriculture to a group of local farmers at Hallora. The Gazette’s RUSSELL BENNETT headed along to soak in as much as he could about, among a range of topics, where most farming starts – the soil…

Author: Russell Bennett | Published: July 5, 2018

A guest of the Baw Baw Food Movement, Andre Leu’s presentation late last week on regenerative agriculture broke down just what it is for farming to be ‘sustainable’ or ‘organic’, and explored how to regenerate the environment in which agricultural farming takes place.

An internationally-recognised speaker and the author of ‘The Myths of Safe Pesticides’, Andre is also a past president of IFOAM – the International Federation of Organic Agriculture Movements – and was the first Australian to hold that position.

He has over 40 years’ experience in all facets of organic agriculture, including growing, pest control, weed management, post-harvest transport, new crops and education – not just in Australia, but right across Asia, Europe, America, and Africa.

KEEP READING ON PAKENHAM-BERWICK GAZETTE

Can Farming Save Puerto Rico’s Future?

As climate change alters how and where food is grown, Puerto Rico’s agro-ecology brigades serve as a model for sustainable farming.

Author: Audrea Lim | Published: June 11, 2018

Our climate is changing, and our approaches to politics and activism have to change with it. That’s why The Nation, in partnership with the Food & Environment Reporting Network, is launching Taking Heat, a series of dispatches from the front lines of the climate-justice movement, by journalist Audrea Lim.

In Taking Heat, Lim will explore the ways in which the communities that stand to lose the most from climate change are also becoming leaders in the climate resistance. From the farms of Puerto Rico to the tar sands of Canada, from the streets of Los Angeles to Kentucky’s coal country, communities are coming together to fight for a just transition to a greener and more equitable economy. At a time when extreme-weather events and climate-policy impasse are increasingly dominating environmental news, Taking Heat will focus on the intersection of climate change with other social and political issues, showcasing the ingenious and inventive ways in which people are already reworking our economy and society. There will be new dispatches every few weeks (follow along here).

KEEP READING ON THE NATION

Carbon Farming Works. Can It Scale up in Time to Make a Difference?

The knowledge and tools to sequester carbon on farmland have blossomed rapidly in California; now farmers and ranchers just need funding to make it happen.

Author: Twilight Greenaway | Published: June 12, 2018

Lani Estill is serious about wool. And not just in a knitting-people-sweaters kind of way. Estill and her husband John own thousands of sweeping acres in the northwest corner of California, where they graze cattle and Rambouillet sheep, a cousin of the Merino with exceptionally soft, elastic wool.

“Ninety percent of our income from the sheep herd comes from the lamb we sell,” says Estill. But the wool, “it’s where my passion is.”

Wool, an often-overlooked agricultural commodity, has also opened a number of unexpected doors for Bare Ranch, the land Estill and her family call home. In fact, their small yarn and wool business has allowed Lani and John to begin “carbon farming,” or considering how and where their land can pull more carbon from the atmosphere and put it into the soil in an effort to mitigate climate change. And in a rural part of the state where talk of climate change can cause many a raised eyebrow, such a shift is pretty remarkable.

KEEP READING ON CIVIL EATS

Carbon Farming Coming to Santa Barbara

Author: Tanner Walker | Published: May 29, 2018

Carbon ranching is coming to Santa Barbara, but farmers aren’t growing carbon — they’re putting it back into the ground. With the help of compost and cattle, native grasses can sequester organic carbon, enriching the soil and removing greenhouse gases from the atmosphere.

For example, a single acre of grazed grasslands in Santa Barbara can remove the equivalent of 3.9 tons of CO2 each year by using a compost application plan outlined by the California Department of Food and Agriculture.

According to the Community Environmental Council of Santa Barbara, 270,000 acres in the county are suitable for compost application. Even if only 15 percent of the available land received a single dusting of compost, their analysis “shows that the increased sequestration could offset all of the greenhouse gas emissions from the county’s agricultural sector.”

KEEP READING ON THE BOTTOM LINE

Carbon Farming Isn’t Worth It for Farmers. Two Blockchain Companies Want to Change That

Can the tech that powers cryptocurrency spark a regenerative ag revolution?

Author: Jessica McKenzie | Published: June 4, 2018

When the price of Bitcoin skyrocketed at the end of 2017, analysts crunched the numbers and concluded that the cryptocurrency was set to consume the entire global energy supply by the end of 2020. “Mining” Bitcoin involves solving increasingly complex mathematical equations that secure the network in exchange for newly-minted cryptocurrency—which incidentally requires lots of energy. Huge server farms have popped up around the world for the express purpose of generating the virtual cash, from China to upstate New York, where one town put a moratorium on new commercial cryptocurrency mining operations to protect “the City’s natural, historic, cultural and electrical resources.”

But in spite of Bitcoin’s eco-unfriendly reputation, some organizations propose using blockchain, the technology that makes the cryptocurrency possible, to power a regenerative agricultural revolution. The ultimate goal is to reverse the flow of carbon dioxide into the atmosphere until atmospheric levels fall to a degree that scientists agree will stabilize the climate.

Regenerative agriculture describes a range of farming practices that prioritize soil health and biodiversity over short-term gains that can be derived from tilling and weeding, heavy pesticide use, or artificial fertilizers. Advocates of regenerative agriculture have long argued that holistic land management is better for the farmer and for the earth, but the movement has recently gotten a boost from interest in one of its other benefits: carbon sequestration.

KEEP READING ON THE NEW FOOD ECONOMY

Farmers Can Save the Planet Before They Destroy It, Australian Climate Scientist Says

Author: Amy Bickel | Published: May 29, 2018

In a room full of regenerative agriculture faithfuls, Australian climate scientist and microbiologist Walter Jehne started the conversation.

Will farmers save the planet before they destroy it?

How the future plays out depends on how well the industry understands, respects and regenerates soils, he said.

Healthy biosystems across the world’s farmland provide stable hydrology, weather, economy and communities, he said during the annual Fuller Field School in Emporia last month. But the current picture of feeding a swelling population with limited resources isn’t rosy.

Jehne noted the growing extremes in global weather patterns, such as droughts, floods and wildfires. Moreover, he said, farmers have borrowed money on the concept to produce as much as they can from the land they have.

“It is really the unpredictability of growing a crop and the gamble of “will I have the season as expected to let me grow that crop, harvest that crop and avoid the diseases on that crop,” said Jehne, who is also the director of Healthy Soils Australia.

KEEP READING ON HIGH PLAINS JOURNAL

Can Organic Soil Help Mitigate Climate Change?

Author: Ana-Christina Gaeta | Published: May 2018

study published in the journal Advances in Agronomy released findings about the powerful role that organic soil may play in combating climate change.

A collaboration between the National Soil Project at Northeastern University and The Organic Center sought out to compare the carbon sequestering potential of both organic and conventional farming. The study engaged more than 1,000 farmers from across the United States. Organic farmers provided 659 organic soil samples from 39 different states. Conventional farmers provided 728 conventional soil samples from 48 states for testing. The team measured the humic substance of the samples, which is essentially a mixture of naturally occurring decaying organic matter which nurtures the soil. Humic substances are made up of fulvic and humic acids. According to Jessica Shade, Director of Science Programs of The Organic Center, the study “looked at humic substances, which are one of the best measures of long-term carbon sequestration in the soils because they resist degradation and can remain in the soil for hundreds and sometimes thousands of years.”

KEEP READING ON FOOD TANK

A Well-Balanced Agro-Ecological System Is Needed

Author: Bryan Simon, Land Stewardship Project | Published: May 22, 2018

It’s not the cow or the sow, but the how. I hate to break it to all the conscientious consumers who have bought into the idea that completely avoiding meat is the answer to our planet’s environmental woes, but they’ve been misled. That’s right, I’m calling you out, Beyonce, Brad Pitt, Al Gore and others who are coaching fans to become vegan to save the planet. Such a message, while well-intentioned, misses the mark. Animals are not the problem; the problem is how they are managed.

Animals provide valuable goods and services, like nutrient cycling, habitat diversity, clean water and soil health, but only when integrated with the land.

Unfortunately, confined animal feeding operations (CAFOs) have removed animals from the land, and the consequences are evident: a rapidly changing climate, polluted water, soil loss, rampant pest problems, and barren landscapes devoid of wildlife. Then there are the social costs: CAFOs are highly extractive and exploitative. They put small- and mid-sized farms out of business, and leave rural communities diminished.

KEEP READING ON ST. CLOUD TIMES