Posts

Archuleta’s Message Inspires: Get the Ecology Right, the Money Will Follow

Author: Gillian Pomplun | Published: August 8, 2018

Nationally-known soil scientist Ray Archuleta presented a practical road map for restoration of farm profitability to about 200 farmers gathered at the Tainter Creek Watershed Council’s ‘Reducing Costs and Flood Impacts on the Farm’ events.

The program was held Wednesday, July 25 and Thursday, July 26 at Woodhill Farms in rural Vernon County. Tainter Creek Watershed Council members Brian and Laura McCulloh own Woodhill Farms, located in Franklin Township.

The retired 32-year career soil scientist with USDA-NRCS with an ag school background had a straightforward message for the assembled farmers.

“We got it all wrong,” Archuleta was quick to say.  “In our western scientific tradition, we utilize the principle of ‘reductionism,’ which is breaking things down into parts to study them.

KEEP READING ON SW NEWS 4U

What is No-Till Farming?

The Earth loses roughly 23 billion tons of fertile soil every year. At this rate, all fertile soil will be gone within 150 years, unless farmers convert to practices that restore and build soil organic matter, an essential component of soil fertility.

Many industrial agricultural practices are lethal to soil fertility, including deforestation and burning, and excessive use of synthetic fertilizers and other toxic chemicals. One of the biggest contributors to soil degradation is the common practice of soil tilling. Fortunately, a growing number of farmers realize the importance of preserving and improving their soil by adopting no-till practices.

Young soybean plants thrive in the resiue of a wheat crop. This form of no till farming provides good protection for the soil from erosion and helps retain moisture for the new crop. Photo credit: USDA NRCS Photo Gallery

The invention of the plow—progress or problem?

No-till farming is nothing new. It was used as far back as 10,000 years ago. But as plow designs and production methods improved during Europe’s Agricultural Revolution in the 18th and early 19th centuries, tilling became increasingly popular. Farmers adopted the method because it allowed them to plant more seeds while expending less effort.

Tilling involves turning over the first 6 – 10 inches of soil before planting new crops. This practice works surface crop residues, animal manure and weeds deep into the field, blending it into the soil. It also aerates and warms the soil. Sounds like a good thing, right? Unfortunately, in the long run, tilling does more harm than good. Here’s why.

Tillage loosens and removes any plant matter covering the soil, leaving it bare. Bare soil, especially soil that is deficient in rich organic matter, is more likely to be eroded by wind and water. Think of it this way: Undisturbed soil resembles a sponge, held together by an intricate structure of different soil particles and channels created by roots and soil organisms. When the soil is disturbed by tilling, its structure becomes less able to absorb and infiltrate water and nutrients.

Tilling also displaces and/or kills off the millions of microbes and insects that form healthy soil biology. The long-term use of deep tillage can convert healthy soil into a lifeless growing medium dependent on chemical inputs for productivity.

The case for a no-till farming future

From a soil perspective, the benefits of no-till farming far outnumber those of tillage-based systems. No-till practices allow the soil structure to stay intact and also protect the soil by leaving crop residue on the soil surface. Improved soil structure and soil cover increase the soil’s ability to absorb and infiltrate water, which in turn reduces soil erosion and runoff and prevents pollution from entering nearby water sources.

No-till practices also slow evaporation, which not only means better absorption of rainwater, but it also increases irrigation efficiency, ultimately leading to higher yields, especially during hot and dry weather.

Soil microorganisms, fungi and bacteria, critical to soil health, also benefit from no-till practices. When soil is left undisturbed, beneficial soil organisms can establish their communities and feed off of the soil’s organic matter. A healthy soil biome is important for nutrient cycling and suppressing plant diseases. As soil organic matter improves, so does the soil’s internal structure—increasing the soil’s capacity to grow more nutrient-dense crops.

It’s clear that adopting no-till practices is good for the soil. But what’s in it for the farmer? Remember, tilling became popular because it meant farmers could plant more seeds, faster. Modern no-till tractor implements allow farmers to sow seeds faster and cheaper than if they tilled their fields. Conventional tillage practices require the farmer to make several passes over the field, first tilling the soil and then returning to plant seeds. No-till removes the step of tilling the soil and therefore saves the farmer time and money. According to a report published in Scientific America, this decreases the fuel expense by 50 to 80 percent and the labor by 30 to 50 percent.

Conventional vs. organic no-till farming

One of the common misconceptions about no-till farming is that farmers can use this practice only if they grow genetically engineered (GMO) crops, which require the use of herbicides. To clear up this confusion, it’s important to understand that there are two types of no-till farming: conventional and organic.

In conventional no-till farming, farmers use herbicides to manage the weeds before and after sowing the seeds. The amount of herbicides used in this approach is even higher than the amount used in tillage-based farming, which causes a threat to the environment and human health.

Organic no-till farming uses a variety of methods to manage weeds and reduce or eliminate tillage without resorting to the use of chemical herbicides. These methods include cover crops, crop rotation, free-range livestock and tractor implements such as the roller crimper, which farmers can use to lay down a weed-suppressing mat that can be planted through in one pass.

Organic no-till farming on its own isn’t an all-cure solution to the world’s soil crisis. But it’s one of the many important practices that move us toward a regenerative agriculture model that is better for human health and the environment.

How no-till farming fits into the bigger climate solution

Until recently, the “how do we solve global warming” conversation focused almost exclusively on the need to reduce greenhouse gas emissions. It’s absolutely critical that we do that, and that we do it fast.

But it’s equally, if not more critical, that we figure out how to draw down the carbon that’s already in the atmosphere. Thankfully, climate scientists now recognize that healthy soil plays an essential role in drawing down and sequestering carbon.

According to Rodale Institute, adopting regenerative agricultural practices across the globe could sequester global annual greenhouse gas emissions, which is roughly 52 gigatonnes of carbon dioxide.

Where does no-till farming fit into the carbon sequestration story?

Soil naturally stores carbon. When soil is plowed under, carbon, in the form of organic material such as plant roots and microorganisms, rises to the soil’s surface. This temporarily provides nutrients for crops. But as the soil carbon is exposed to oxygen in the atmosphere, it transforms into carbon dioxide, contributing to the greenhouse gas emissions that warm the planet.

No-till farming minimizes soil disturbance, which helps keep carbon in the soil. It also enriches soil biodiversity, reducing the need for chemical fertilizers that emit greenhouse gases. Studies have shown that organic no-till practices, when combined with cover cropping and organic management, help increase soil organic carbon by up to 9 percent after two years and 21 percent after six years.

No-till practices, when combined with other regenerative methods, such as cover cropping, agroforestry and the rotation of multispecies livestock, can help establish truly regenerative and climate-resilient farms.

Read next: Why Regenerative Agriculture?

Click here to subscribe to Regeneration International’s newsletter.

Seeds: Regenerative Gold Medal Winner

Author: Kerry Hoffschneider | Published: June 5, 2018

Colleen Fulton won a gold medal in the Public Speaking Competition at both the Nebraska District FFA and State FFA Convention competitions this year. Her speech was entitled, “Regenerative Agriculture.” However, long before Colleen achieved these awards, her father Kevin Fulton, a farmer and rancher near Litchfield, Neb., went on a journey through agriculture that led him to change to the regenerative approach that has had a lasting impact on all his children – Colleen, Cami and Timothy.

Kevin attended High School in Loup City and assumed leadership roles at a very young age – everything from FFA president, captain of the football team to president of National Honor Society. He then went to college at Kansas State University to achieve a bachelor’s degree in animal science. He later went on to graduate school where he earned a master’s degree in exercise physiology and spent 27 years in competitive weightlifting – all over the country and world. That led him to a career as the Head Strength and Conditioning coach at the University of Massachusetts.

KEEP READING ON THE YORK NEWS TIMES

Twenty-Six Years Later: How One Kansas Farmer Became a Convert and Saved His Soil

Author: Amy Bickel | Published: May 21, 2018

Joe Swanson’s turning point came in 1991.

The Rice County, Kansas farmer had just bought a Plains Plow, with 30-inch sweeps and a shank in the middle. It was designed to undercut weeds while leaving residue on his fields.

The field looked beautiful the day he worked it. That changed overnight.

“We had a 3- to 4-inch downpour,” he said. “I drove by that field the next day and every furrow, every 30 inches, had washed out about 6 to 10 inches, however deep I ran that shank. It made me sick.”

He realized his erosion issues would continue if he kept tilling.

“I said, that is it. We’ve been no-till ever since.”

On a May morning, Swanson stood in that same field that converted him 26 years ago, talking to a group of farmers during a No-Till on the Plains field day. His mission is to eliminate erosion and rebuild soil health.

The journey, he said, hasn’t been easy. But Swanson sees changes across his fields. He uses fewer inputs. His soils are healthier.

KEEP READING ON HIGH PLAINS JOURNAL

No-Till Farmers’ Push for Healthy Soils Ignites a Movement in the Plains

No-till farming started as a way to keep costs down for conventional farmers in danger of losing their land. Now it has become a subculture and a way of life for outsider farmers all over rural America.

Author: Twilight Greenaway | Published: February 13, 2018

Jimmy Emmons isn’t the kind of farmer you might expect to talk for over an hour about rebuilding an ecosystem. And yet, on a recent Wednesday in January, before a group of around 800 farmers, that’s exactly what he did.

After walking onstage at the Hyatt in Wichita, Kansas to upbeat country music and stage lights reminiscent of a Garth Brooks concert, Emmons declared himself a recovering tillage addict. Then he got down to business detailing the way he and his wife Ginger have re-built the soil on their 2,000-acre, third-generation Oklahoma farm.

A high point of the presentation came when the 50-something farmer—who now raises cattle and grows alfalfa, wheat, and canola along with myriad cover crops—described a deep trench he’d dug in one of his fields for the purposes of showing some out of town visitors a subterranean cross-section of his soil. After it rained, Emmons walked down into the trench with his camera phone, and traced the way water had infiltrated the soil. Along the way, the Emmons on stage and the Emmons behind the camera became a kind of chorus of enthusiasm, pointing out earthworm activity, a root that had grown over two-and-a-half feet down, and the layer of dark, carbon-rich soil.

“It was just amazing,” said Emmons in an energetic southern drawl. The water had seeped down over five feet. And the other farmers in the room—a collection of livestock, grain and legume producers mainly from Oklahoma, Kansas, Nebraska, and the Dakotas, as well as several Canadian provinces who had gathered for the 22nd annual No-till on the Plains conference—nodded their heads in a collective amen.

Most had travelled for hours to hear Emmons and others like him share their soil secrets, their battle scars, and their reasons to hope. And they knew that getting rainwater to truly soak into farmland—instead of hitting dry, dead soil, soaking an inch or two down, and then running laterally off—is a lost art.

The previous morning, the controversial grazing guru Allan Savory had stood on the same stage before the enthusiastic crowd and described the enormous quantity of spent, lifeless soil that erodes into the ocean every year in terms of train cars. “A train load of soil 116 miles long leaves the country every day,” said Savory, quoting the Natural Resources Conservation Service of the U.S. Department of Agriculture (USDA).

Or to put it another way, erosion accounts for the loss of around 1.7 billion tons of farmland around the world very year. As that soil escapes, so does an abundance of nitrogen and other nutrients that are slowly killing vast parts of our oceans and lakes. And as agricultural soil dies and disperses, it also releases greenhouse gases like nitrous oxide and carbon dioxide.

KEEP READING ON CIVIL EATS

You Can Change Your Soil

Author: Cindy Snyder | Published: February 12, 2018

BURLEY — After 25 years of experimenting with cover crop mixes and tillage practices, Gabe Brown has a simple message for those who would like to put their farms or ranches on a more sustainable path.

“You have the ability to change your soils and your operation,” he told a crowd of more than 300 Thursday at a soil health workshop in Burley. “You can do it.”

When Brown and his wife bought her parents farm in Burleigh County, N.D., in 1991, the soils had less than 2 percent organic matter. A double ring infiltration test showed the ground could only take a half inch of water per hour. The crop rotation had been wheat, oats and barley — all cool season grasses.

Today those same fields have 5 percent organic matter and the soil can take an inch of water in 9 seconds. The second inch took 16 seconds to infiltrate.

“Don’t tell me the soils you have are what you are stuck with,” Brown said. “We can all make changes.”

Not that the process is quick or simple. And Brown warns there is no cookie-cutter approach.

He travels across the U.S. speaking to other farmers about his 5,000-acre farm and also hosts tours of his farm. Everyday he receives more than 100 emails from farmers, most of them asking the same question: What cover crop mix should I plant?

“I didn’t choose your wife,” Brown told the audience. “Why would I choose your cover crop?”

Not matching the cover crop to the resource concern is the most common reason cover crops fail. Brown shared an example of a farmer in South Dakota who baled off his winter wheat straw and then seeded turnips and radishes into the residue. He then grazed off the cover crop and called Brown to complain that the field was still blowing away.

The problem wasn’t hard to diagnose. Brassicas accelerate residue decomposition, and the farmer had already reduced the residue by baling off the straw. There wasn’t enough carbon in the system to armor the soil.

“Cover crops work,” Brown said. “What didn’t work was the person making the planting decision.”

If a seed dealer does not ask a producer within the first couple of questions what resource concern the producer wants to address with a cover crop, Brown recommends hanging up the phone and calling another dealer. “They don’t have your best interest in mind.”

KEEP READING ON MAGICVALLEY.COM

Man Who Wrote the Book on Regenerative Agriculture Says Conservation is the Fifth Ag Revolution

Published: February 5, 2018

According to Dr. David Montgomery, author and professor at the University of Washington who spoke to farmers during the 22nd Annual No-Till on the Plains Winter Conference, our soils around the world have been severely degraded due to conventional agricultural practices. In a recent interview with Radio Oklahoma Ag Network Associate Farm Director Carson Horn, Montgomery says soil degradation has taken on two forms in modern times.

“One, is the erosion and loss of soil itself, like what happened in the Dust Bowl for example,” Montgomery explained. “But also, in terms of degraded soil organic matter – the carbon that’s in the soil. You can think of it as food for the microbes that actually help build soil fertility.”

Listen to Dr. David Montgomery and Carson Horn speak about how regenerative agriculture can reverse the effects of soil degradation here.

Montgomery says in North America, about half of our soil organic matter has been degraded, averaged across the United States. Globally, he says, it is about the same. Not only is that a devastating amount to have lost, it is also continuing to be lost at an alarming rate.

“The pace of global soil degradation at present, shows we’re losing 0.3 percent of our agricultural land capacity globally each year,” he said. “That sounds like a small number, but you play that out over the next 100 years and we’d be on track to lose a third of our agricultural productive capacity while we’re on track to raise our population by 50 percent. Those numbers are working against each other.”

KEEP READING ON OKLAHOMA FARM REPORT

How a Grain and Legume Farmer Harvests Nutrition from the Soil

Larry Kandarian grows legumes alongside ancient grains on his California farm, producing a polyculture that benefits both the health of the land and his own.

Author: Clarissa Wei | Published: January 9, 2018

“I’m 72, but I consider myself middle-aged,” said Larry Kandarian of Kandarian Organic Farms as he smiled and took a sip of his stew. Sitting in his trailer with a sun-weathered tan, Kandarian looks like any other farmer in the state.

And for a while, he was.

In the 1970s, Kandarian started off as a conventional farmer specializing in flowers and California native plants on his farm in Los Osos, about 100 miles northwest of Santa Barbara on California’s central coast. He decided to pivot full-time to growing organic, ancient grains eight years ago after the recession shrank the market for his goods.

“I figured that people still have to eat grains,” he said of the shift.

But what sets him apart now is his approach to growing food. Instead of deeply plowing the land and mixing in sheets of fertilizers to ensure high yields like most farmers in America, Kandarian employs a minimal-tillage system and uses absolutely no fertilizers or compost.

For fertility, Kandarian takes advantage of the nitrogen-fixing properties of plants in the legume family like clover, beans, and sweet pea. He sows legume seeds in the ground after the grain is harvested, leaving the chaff of the grains still on the field. The chaff decomposes and fertilizes the legume crop. The legume crop, as it grows, fixes nitrogen into the soil.

KEEP READING ON CIVIL EATS

Africa’s No-Till Revolution

Author: Mike Wilson | Published: February 3, 2015

Sustainable, integrated cropping systems are boosting yields and building food security for smallholder African farmers

In a quiet rural corner of Ghana, near the humble village of Amanchia near Kumasi, Dr. Kofi Boa goes about revolutionizing food production in Africa, one farmer at a time.

“It is my dream that the whole of Africa will know how to sustain the productivity of a piece of land,” says Boa, speaking to a group of seed growers who have flown in from several countries to learn his techniques at the No-Till Centre he opened here two years ago. The Centre is supported by a partnership between John Deere, the Howard G. Buffett Foundation and DuPont Pioneer.

In Ghana, where agriculture makes up 60% of GDP and accounts for over a third of all employment, Dr. Boa is something of a hero. One by one he is showing farmers how traditional ‘slash-and-burn‘ methods lead to extreme erosion and poor yields that have kept them impoverished for decades.

Instead, Boa shows farmers how a sustainable system focusing on no-till, cover crop mulch and intercropping can lift them out of self-sustenance and inject new income streams to the poorest of families.

Slash-and-burn farming today is used by upwards of 500 million farmers worldwide. With slash-and-burn farming, says Boa, many smallholder farmers could not get enough production from their farms to afford even the basics, like sending their kids to high school, which costs real money in Ghana. But with no other options and limited education, many farmers just continued the same old techniques.

Until now.

READ MORE ON FARM FUTURES

Earth Talk: How Are Farms and Farmers Dealing With Climate Change?

Authors: Roddy Scheer & Doug Moss |  Published: June 5, 2017 

Agriculture may well be one of the industries hardest hit by the effects of global warming. The non-profit Natural Resources Defense Council (NRDC), a leading environmental advocacy group, reports that warming-related drought and flooding is already behind tens of billions of dollars in American agricultural losses annually. Given this growing threat, more and more farmers are looking to incorporate tools and techniques — let alone switch up what crops they grow — to be prepared for the big environmental changes already underway.

According to Washington State University’s Center for Sustaining Agriculture & Natural Resources (CSANR), some of the most promising warming-friendly farming technologies and practices include conservation tillage (stirring up the soil less), precision agriculture (which employs information technology to monitor crop development, refine soil inputs and optimize growing conditions), improved cropping systems (refining the sequence of which crops follow each other on a given piece of land), and anaerobic digestion of organic wastes (via capturing methane waste and turning it into useable energy).

NRDC has been working on sustainable agriculture for decades, and recently launched its Climate Resistant Farms campaign to focus on helping farmers roll with the punches of global warming through implementation of some of these new techniques. The group works directly with farmers to develop and share some of these best practices regarding soil health and water use.

“Climate change and extreme weather will likely have detrimental impacts on crop production, but farmers can use cover crops and other soil stewardship practices to make their farms more resilient to the climate change impacts already being felt and those likely to come in the years ahead,” reports NRDC. “Such practices can also help to reduce and capture the greenhouse gas emissions that contribute to climate change.”

NRDC analyzed the carbon capture and water-holding benefits of soil stewardship methods to increase soil organic matter in the 10 highest-value-producing agricultural states in the U.S. They found that “using cover crops on just half of the acres devoted to the nation’s two most ubiquitous crops — corn and soybeans — in those top 10 states could help capture more than 19 million metric tons of carbon each year and help soils retain an additional trillion gallons of water.”

KEEP READING ON SANTA MONICA DAILY PRESS