Posts

Natural Intelligence Farming: Ian and Dianne Haggerty

Author: Christopher Johns | Published: August 3, 2017 

Key Point

  • Natural Intelligence farming uses natural processes combined with modern agricultural technology to produce food and fibre of optimum nutrition and quality while enhancing positive ecosystem development.
  • Natural Intelligence farming has the potential to sustainably regenerate the agricultural landscape, restore biodiversity and to sequester greenhouse gasses in the soil as beneficial soil carbon.
  • There is a direct link between soil health and human health and there is a growing body of research into this relationship between soil and plant/animal, human and environmental health.
  •  Natural intelligence farming can be applied to broad-acre agricultural production with only small changes to capital equipment and a reduction in operating costs and increased productivity.
  • Once the appropriate logistic infrastructure is available, the produce from Natural Intelligence farming can be market differentiated and priced accordingly for its nutrient diversity and absence of chemicals and other toxins.

Introduction

Natural Intelligence Farming is the term Ian and Dianne Haggerty use to describe the harnessing of the dynamic, natural relationships that exists between all the organisms in the ecosystem and the environment itself, particularly the soil. These relationships are highly complex and versatile. They involve mutually beneficial interactions between the soil, plant seeds and roots, microorganisms, and the ruminants that feed on the plants and cycle dung and microbes back to the soil. Understanding these relationships requires a holistic engagement with the agricultural ecosystem and the body of scientific knowledge supporting this understanding is still incomplete. The key to natural intelligence farming is not to hinder or obstruct the interactions that support and inform these relationships.  The Haggerty’s aim is to facilitate natural intelligence with modern farming methods to create regenerative agricultural ecosystems that produce optimal food and fibre products.

Ian and Dianne farm approximately 13,000 hectares of land in Western Australia’s central wheatbelt, around 190 kilometres north east of Perth. After years of conventional farming, the Haggerty’s realised that their system was vulnerable to dry seasons. Input costs were steadily increasing without corresponding increases in productivity. Soil tests showed adequate nutrient levels, but tissue tests revealed nutrients were not getting to plants in appropriate balance, despite a comprehensive mineral fertiliser program. To top it off, rainfall in recent years had been less than half the annual average often falling in 3 to 5 mm events followed by windy weather, meaning much was lost to evaporation. Maximising crop production in dry years had become a real struggle and hard pans in their soils were severely restricting root growth. So, the Haggerty’s started to research biologically-based farming systems with the aim of increasing their soil’s microbial population, nutrient availability and moisture holding capacity.  What followed was a massive learning curve combining and adapting some of the world’s best ecological knowledge with much ground truthing and extension in harsh Western Australian semi-arid agricultural zone conditions.

Ian and Dianne have a life mission to facilitate positive global change by rebuilding soils in semi-arid regions, producing premium food and fibre and supporting the nutritional needs of humanity to optimise health. In this Feature Interview, FDI takes the opportunity to interview Ian and Dianne and investigate what it is that they are doing differently from other farmers and the benefits of their methods for productivity, ecological regeneration and plant, animal and human health.

Interview

FDI: As an introduction to this Interview could you give us a short history to your association with agriculture and the land?

I&DH:  While coming from long family backgrounds of farmers, neither of us was fortunate enough to inherit a farm so we purchased our own 660ha property in 1994 next door to Di’s parents. It was in the years immediately prior to purchasing our farm, while owning and operating a roadhouse in the Kimberley that we were exposed to some interesting ideas on land management through our contact and friendship with Robyn Tredwell of Birdwood Downs Station (Robyn was the 1995 ABC Rural woman of the year). Her views on using livestock as tools to “Feed, Seed and Weed” the land, penetrated deeply into our psyche even though we were not involved with a rural enterprise at the time.

Purchasing a farm took all our capital reserves so for the first few years we share-farmed our land with Di’s father and worked in return for use of his machinery to grow our crops.

While successfully farming conventionally in the 1990s, and slowly beginning to piece together a working range of plant machinery, it didn’t take long for us to realise that moisture in the soil was key to profitability and that hanging onto that moisture was critical to make a viable crop out of a poor spring. This fact, along with a questioning mind and noticing that there were discrepancies between soil test and tissue test results, sparked a drive for real answers. Reducing risk and increasing profitability year in year out were key goals for the business to progress.

In 2001, we embarked on learning how to improve soil health and productivity in the cropping program. Dr Elaine Ingham’s message of the miracle work of soil microbiological communities in providing optimum balanced nutrition to plants and prevention of disease and insect attack through soil health resonated with us.  At the same time, we consulted with Jane Slattery of South Australia to develop an understanding of ruminant nutrition, intuition and interconnectedness with landscape health.  Working on both the soil and animal health aspects concurrently enabled some wonderful synergies to express and assist with fast tracking the ecological progress of the farm.

 Dr Arden Andersen’s message of the direct link between soil health and human health outcomes rang alarm bells for me [Dianne] as an Occupational Therapist, practising Early Intervention Paediatric and Aged Care occupational therapy as the preventative model for health care which was firmly entrenched. A keen awareness of responsibility as food producers ensued. This was the beginning of an intense learning curve where we pursued the knowledge of many other international and national scientists, leaders in the field of soil health and its relationship to animal, human and environmental and global health.

In 2009 and 2010 we were privileged to be introduced to Dr Christine Jones, Dr Maarten Stapper and Walter Jehne who had considerable knowledge on working soil health principles in Australian agricultural environments. Dr Jones’ “liquid carbon pathway” answered many questions of what was happening within the soil to improve its friability and moisture holding capacity. This was confirmed with deep soil carbon testing in 2012 that confirmed observations with sound figures.  On similar soil types to neighbouring properties, soil carbon was improved by 10t/ha on our cropping land, an increase of 41.46% in the top 30cm of soil.

 It was this knowledge, along with an interest in using livestock to better “feed, seed and weed,” that first motivated us to embark on what has become a life-long passion to farm, together with natural processes, while maintaining a profitable farm business and improving natural capital.

FDI: What are the benefits of your agricultural practices?

I&DH: Our agricultural methods can make a significant contribution to improving global trends in environmental management and human health. There is an existing and growing body of scientific research supporting a wide range of benefits associated with our farming methods. We believe that natural intelligence farming can make a positive contribution in the following areas:

  • Carbon sequestration while producing optimal food and fibre production.
  • Increased biodiversity, particularly microbiological biodiversity in soil.
  • Nil chemical residues tested in grains grown.
  • Nutritional balance in foods grown
  • Decreased or elimination use of synthetic fertilisers.
  • Increased microbiome, the number and diversity of microorganisms in an ecosystem such as the digestive system.
  • Production of fully pasture fed meat that is high in omega-3, conjugated linoleic acid, vitamin E and has greater mineral diversity.
  • Greater reliability in grain crop yields.
  • Crop disease resistance resulting in decreased or eliminated use of fungicides and pesticides.
  • Lower energy requirement for agricultural production.
  • Improved equity.
KEEP READING ON FUTURE DIRECTIONS INTERNATIONAL 

Mastering Soil Health Elevates Farm Productivity, Sustainability

Author: Dennis Pollock | Published: June 19, 2017

Soil health best achieved by minimal soil disturbance, maximizing plant diversity, living roots yearlong, covered soil at all times with plants-residue

It seems in recent years it has become all the rage to make sure that the dirt under our feet – and plants or trees – is healthy in order to sustain farming.

Soil health was the chief topic at a University of California soil health field day held at Five Points, attended by about 200 people including boots-on-the-ground farmers and researchers.

Jeff Mitchell, University of California (UC) Cooperative Extension cropping systems specialist at Fresno County, has been toiling in the trenches – literally – for some 20 years, seeking to illustrate the value of cover crops, and no or low-till agriculture.

At the workshop held at the UC West Side Field Station, Mitchell had trenches to showcase, pits that showed differences between conventional and no-till farming. Speakers on hand discussed some of those differences.

Improved soil health

Mitchell, the growers, and others emphasized that managing for better soil health was best achieved by minimizing soil disturbance, maximizing the diversity of plants in rotation or used as cover crops, keeping living roots in the soil as much as possible, and keeping the soil covered with plants and plant residue at all times.

“I have something growing in the ground 365 days a year,” said Scott Park with Park Farming in Meridian in the Sacramento Valley. “Having roots in the ground is 10,000 times better than adding biomass.”

KEEP READING ON WESTERN FARM PRESS

Land Losses and Lessons on the Great Plains

Author: Peter Carrels | Published: July 7, 2017

Gabe Brown’s 5,200-acre farm and ranch in central North Dakota practically straddles the 100th meridian, the line that historically divided Eastern lands that were farmed from the drier Western lands that were grazed by livestock.

That geographic boundary, of course, has always been somewhat blurry. But in recent years, row-crop agriculture on an industrial scale has pushed the dry line westward. Modern sod-busting has gobbled up vast expanses of native grasslands, markedly enlarging the nation’s corn and soybean acres.

Critics watched this happen but weren’t able to quantify the ecological alteration. Now, an analysis issued by the World Wildlife Fund, Plowprint Report, confirms just how extensively the American Great Plains has been transformed. The Great Plains region, the short and mixed-grass portion of the North American prairie, includes lands from the Canadian border east of the Rocky Mountains, between Great Falls, Montana, and Fargo, North Dakota, and stretching south to Texas — some 800 million acres in total.

Destruction of the Eastern portion of the continent’s prairie region — the tallgrass part — was caused by conversion to corn and soybean fields and is nearly complete. Less than 1 percent of the original tallgrass prairie ecosystem survives. The Plowprint study reveals that since 2009, more than 53 million acres of prairie on the Great Plains has been plowed and converted to corn, soybeans and wheat. That figure — an area that equals the size of Kansas — represents about 13 percent of the estimated 419 million acres of Great Plains grasslands that had survived in its native condition.

Fortunately, stewardship models show how farming can be less damaging and more sustainable. For example, Gabe Brown changed the way he managed his land after suffering four years —1995 to 1998 — of hail and drought. Nearly broke and lacking access to capital to buy seeds and chemicals, Brown re-examined his approach to farming. Finding that his soils had dramatically deteriorated through conventional farming practices, he started avoiding tillage and now relies on cover crops, perennial grasses and a diversity of income streams. When many of his neighbors plowed pastures to plant corn, Brown did the opposite, reducing row crops from 2,000 acres to 800 acres and re-vegetating 1,200 acres back into prairie. His operation also emphasized grazing and grasses instead of growing annual grains.

“It’s not easy to admit that I farmed the wrong way for many years,” Brown said. “But we’ve completely weaned ourselves from government programs, stopped using synthetic fertilizers, minimized herbicide use, and in the process enriched and even built our soils.”

KEEP READING ON EAST OREGONIAN

Great Grazing Beats Most Droughts

Author: Alan Newport | Published: August 2, 2017 

I had the opportunity to visit with a man today about the benefits of managed grazing in a drought, and I think my list of advantages might be useful to others.

These are things I’ve observed and things I’ve gleaned from others as they have managed their way through droughts. In some cases there is science to bear witness to these truths, and in others they are anecdotal but widely accepted among top grazing managers.

The ugly

The bad news is that at some point, drought can get bad enough you may need to destock completely. The good news is, as part of your grazing plans, grazing records, and your records of rainfall and resulting forage production, you should have done so in a controlled method that garnered you the highest price for part of your stock because you sold earlier than everyone else. The other piece of good news is good grazing management will set you up for a faster recovery, and likely a much more successful recovery than continuous graziers.

Beef Producer columnist and long-time holistic grazier Walt Davis says many years ago he studied the rainfall records and stocking rate records from the research station at San Angelo, Texas, and found all the major declines in stocking rate occurred after droughts. These were new, lower plateaus of production from which the forage never recovered. Of course, the research station was continuously grazed.

The good

Just how much drought resistance you have depends foremost on how much progress you’ve made increasing soil organic matter through good grazing. The key is full recovery of plants and the deep roots that puts down. There are many ways to do this, as we’ve covered over the years. R.P. Cooke uses full recovery all the time, all year around, as do many others. Some graze part of the property on a schedule that uses two or three grazings during the growing season while recovering part of the ranch fully. Then they graze in the winter on the fully recovered and heavily stockpiled forage.

One thing I know is people who use faster rotations and less recovery time, concentrating on keeping forage vegetative and at the highest quality, have much less drought resistance. Their advantage is typically they know about how many days of forage they have left.

Better timing

Great graziers keep good records on rainfall and forage production (usually animal days per acre) or similar, so they understand when they are getting in trouble before others. Selling a portion of your animals early in a drought cycle when prices are good is an inconvenience, but not a disaster. Selling a large proportion of your animals, or all of them, well into a drought and after prices are down significantly is absolutely a disaster.

Great graziers also know how many days of forage they have ahead of their cattle and when they will run out. They also can monitor regrowth in grazed paddocks to see if that supply will expand.

Better soil

Those who practice complete recovery of forages as part of their grazing management will have soil that’s healthier and has higher organic matter and more life. The plant roots will be deeper, fuller and higher functioning. The arbuscular mycorrhizal fungi will be healthier and will provide more water and more nutrients to the plants so they can thrive. Higher organic matter and more shade on the soil surface can catch and hold much more water — each 1% soil organic matter can hold about 25,000 gallons of water per inch of soil. That alone can fight back a lot of drought.

More grass

The records kept by great graziers show they increase the animal days per acre and therefore increase their stocking rates over time. We have reported many, many times over the years that graziers who do a good job nearly always double their stocking rates, and that many triple or quadruple their stocking rates. This proves they are growing more grass.

Incidentally, animal days per acre or animal unit days are just measurements of how many grazing days you get per unit of livestock.

KEEP READING ON BEEF PRODUCER 

Bison Returned From the Brink Just in Time for Climate Change

Author: Deena Shanker | Published: July 31, 2017 

Ted Turner owns more than 100,000 acres of pristine land in southwest Montana, complete with lush grassland and forested hills rolling with Douglas firs. There are populations of wolves, black and grizzly bears, deer, elk and pronghorn antelope ranging freely, some crossing from nearby Yellowstone Park. But the real stars of the Flying D Ranch are his thousands of bison, the American beast once hunted to the edge of extinction.

Turner’s bison don’t need much human intervention to thrive. They breed naturally in the early summer, when the grass is at its most nutritious, and they birth their calves in the fields. The bison can withstand temperature fluctuations and snowfall. The animals are vaccinated for common diseases, but routine antibiotics and synthetic growth hormones aren’t used. When one of the animals dies—on the Flying D Ranch, about 2 percent to 3 percent of the herd perishes each year—the carcass is simply left for scavengers. 

The enormous, shaggy animals are making a comeback as a chic, healthy and environmentally friendly source of meat. But to those in the industry, the animals are just the final piece in a larger ecological puzzle. “The grass business is the business we’re in,” said Mark Kossler, vice president of ranch operations at Turner Enterprises Inc. Keep the grass growing, the philosophy goes, and the rest of the ecosystem will follow. In other words: If you grow the grass, your bison will thrive.

And the bison business is thriving. The meat is healthier than beef, with more protein and less fat than salmon, and it is also more lucrative for ranchers. Nearly 60 percent of bison marketers reported an increase in demand, and 67 percent said they were planning to expand their businesses, according to a survey in May by the National Bison Association, an industry group.

Perhaps what makes this growth most surprising is that it coincides with challenging prices for bison meat. A pound of ground beef retails for $4.99 per pound at the moment, according to USDA data. Ground bison currently sells for more than twice that price, at $10.99 per pound. The past three years have seen a 25 percent growth in sales in the retail and food service sectors, according to the trade group, bringing in about $350 million in 2016.

The bison industry is a bit uncomfortable with a price climb that has no end in sight. There is general concern that if it continues, consumers will eventually stop buying. Ranchers are still scared by a market crash in the early 2000s. Nobody wants the bison bubble to burst again. “We don’t want to price ourselves out of the market,” Kossler said.

Bison keeps flying off store shelves—and not just at farmer’s markets and Whole Foods Market IncWal-Mart Stores Inc. and Costco Wholesale Corp. are also sellers, and many ranchers offer direct sales online. In 2016, General Mills Inc.acquired EPIC Provisions, whose Bison Bacon Cranberry Bar, made with 100 percent grass-fed bison, is its bestseller. To keep up, bison backers just announceda new commitment for bison herd restoration: One million bison in North America by 2027, more than doubling the current estimated 391,000.

For now, at least, nature is taking care of bison and the people who raise it, including those in the more than 60 Native American tribes across 19 states working with the NBA. But the bison industry, unlike some of its peers in meat production, is keenly aware that climate change is a looming threat to the health of the herds.

Most farmers and ranchers speak of climate change in hushed tones, if at all, probably because they’re considered part of the problem (PDF). At the July International Bison Conference in Big Sky, Montana, however, climate change was the central theme.

Conference attendees included babies, 6-year-olds, teenagers, millennials, mid-life career changers and grandparents. (“My grandkids call me ‘Buffalo,’” one attendee said.) Amongst the crowds, there seemed to be a consensus that the climate was changing and the bison industry would need to adapt.

In a giant conference room at the Big Sky Resort, about 600 ranchers assembled to listen to James Hurrell, the director at the National Center for Atmospheric Research, deliver the keynote presentation on the impacts—past, present and future—of a changing climate. An audible gasp was heard in response to a slide about the warmer temperatures expected by the end of the century, and someone in the audience let out a “whoa” in response to predictions of 100-degree-plus days to come.

In a different presentation, ecologist Joseph Craine presented research showing that the warming temperatures were reducing the protein in grass, leading to smaller bison. He urged the ranchers to pay close attention to (and share) what their animals are eating as they naturally seek out protein. “Everyone has a story on strange things their bison eat,” he said. That information could help everyone.

“Ag is risky and it’s getting riskier from a climate perspective,” Dannele Peck, director of the USDA’s Northern Plains Climate Hub told conference attendees. The agency is working to gather information from, and distribute information to, farmers and ranchers about short-term extreme weather events, as well as long-term climate-related changes. While the websites’ tools, such as climate projections and soil data, are not specifically built for bison, Peck urged the ranchers to use them. After the presentation, she said she was “really hopeful” that the USDA’s Agricultural Research Service will fare well in the final Trump administration budgets.

For many bison ranchers, the need for a symbiotic relationship with the environment is clear. “This organization is fundamentally different, a conservation organization that works very closely with sustainable farming organizations,” said Tom Barthel, the owner of Snake River Farm in Minnesota. He raises bison, cattle, hogs and, according to his business card, “damn fine horses.” Not only do his bison live well on his ranch, they die well, too. The bison are pasture harvested—slaughtered in the field without ever knowing what hit them. He sells his meat directly, and—because bison cooks a little differently than typical beef—includes cooking instructions with his invoices. “These are the cowboys’ cowboys,” he said of the people that become bison ranchers. They care not just about money, but about their land and animals as well.

KEEP READING ON THE GUARDIAN 

Healthy Soil Microbes, Healthy People

Authors: Mike Amaranthus and Bruce Allyn | Published: June 11, 2013

We have been hearing a lot recently about a revolution in the way we think about human health — how it is inextricably linked to the health of microbes in our gut, mouth, nasal passages, and other “habitats” in and on us. With the release last summer of the results of the five-year National Institutes of Health’s Human Microbiome Project, we are told we should think of ourselves as a “superorganism,” a residence for microbes with whom we have coevolved, who perform critical functions and provide services to us, and who outnumber our own human cells ten to one. For the first time, thanks to our ability to conduct highly efficient and low cost genetic sequencing, we now have a map of the normal microbial make-up of a healthy human, a collection of bacteria, fungi, one-celled archaea, and viruses. Collectively they weigh about three pounds — the same as our brain.

 

Now that we have this map of what microorganisms are vital to our health, many believe that the future of healthcare will focus less on traditional illnesses and more on treating disorders of the human microbiome by introducing targeted microbial species (a “probiotic”) and therapeutic foods (a “prebiotic” — food for microbes) into the gut “community.” Scientists in the Human Microbiome Project set as a core outcome the development of “a twenty-first century pharmacopoeia that includes members of the human microbiota and the chemical messengers they produce.” In short, the drugs of the future that we ingest will be full of friendly germs and the food they like to eat.

 

The single greatest leverage point for a sustainable and healthy future for the seven billion people on the planet is arguably immediately underfoot: the living soil, where we grow our food. But there is another major revolution in human health also just beginning based on an understanding of tiny organisms. It is driven by the same technological advances and allows us to understand and restore our collaborative relationship with microbiota not in the human gut but in another dark place: the soil.

Just as we have unwittingly destroyed vital microbes in the human gut through overuse of antibiotics and highly processed foods, we have recklessly devastated soil microbiota essential to plant health through overuse of certain chemical fertilizers, fungicides, herbicides, pesticides, failure to add sufficient organic matter (upon which they feed), and heavy tillage. These soil microorganisms — particularly bacteria and fungi — cycle nutrients and water to plants, to our crops, the source of our food, and ultimately our health. Soil bacteria and fungi serve as the “stomachs” of plants. They form symbiotic relationships with plant roots and “digest” nutrients, providing nitrogen, phosphorus, and many other nutrients in a form that plant cells can assimilate. Reintroducing the right bacteria and fungi to facilitate the dark fermentation process in depleted and sterile soils is analogous to eating yogurt (or taking those targeted probiotic “drugs of the future”) to restore the right microbiota deep in your digestive tract.

The good news is that the same technological advances that allow us to map the human microbiome now enable us to understand, isolate, and reintroduce microbial species into the soil to repair the damage and restore healthy microbial communities that sustain our crops and provide nutritious food. It is now much easier for us to map genetic sequences of soil microorganisms, understand what they actually do and how to grow them, and reintroduce them back to the soil.

Since the 1970s, there have been soil microbes for sale in garden shops, but most products were hit-or-miss in terms of actual effectiveness, were expensive, and were largely limited to horticulture and hydroponics. Due to new genetic sequencing and production technologies, we have now come to a point where we can effectively and at low cost identify and grow key bacteria and the right species of fungi and apply them in large-scale agriculture. We can produce these “bio fertilizers” and add them to soybean, corn, vegetables, or other crop seeds to grow with and nourish the plant. We can sow the “seeds” of microorganisms with our crop seeds and, as hundreds of independent studies confirm, increase our crop yields and reduce the need for irrigation and chemical fertilizers.

These soil microorganisms do much more than nourish plants. Just as the microbes in the human body both aid digestion and maintain our immune system, soil microorganisms both digest nutrients and protect plants against pathogens and other threats. For over four hundred million years, plants have been forming a symbiotic association with fungi that colonize their roots, creating mycorrhizae (my-cor-rhi-zee), literally “fungus roots,” which extend the reach of plant roots a hundred-fold. These fungal filaments not only channel nutrients and water back to the plant cells, they connect plants and actually enable them to communicate with one another and set up defense systems. A recent experiment in the U.K. showed that mycorrhizal filaments act as a conduit for signaling between plants, strengthening their natural defenses against pests. When attacked by aphids, a broad bean plant transmitted a signal through the mycorrhizal filaments to other bean plants nearby, acting as an early warning system, enabling those plants to begin to produce their defensive chemical that repels aphids and attracts wasps, a natural aphid predator. Another study showed that diseased tomato plants also use the underground network of mycorrhizal filaments to warn healthy tomato plants, which then activate their defenses before being attacked themselves.

Thus the microbial community in the soil, like in the human biome, provides “invasion resistance” services to its symbiotic partner. We disturb this association at our peril. As Michael Pollan recently noted, “Some researchers believe that the alarming increase in autoimmune diseases in the West may owe to a disruption in the ancient relationship between our bodies and their ‘old friends’ — the microbial symbionts with whom we coevolved.”

KEEP READING ON THE ATLANTIC

New State Program to Recognize Outstanding Farmers

 Published: July 13, 2017 

You can tell a lot about a farm by looking closely at the soil. That’s why the new, statewide program to recognize Vermont’s most environmentally friendly farmers will be based on soil-sampling and monitoring. Today, Governor Phil Scott announced the pilot launch of the new Vermont Environmental Stewardship Program (VESP), which will use soil-based analysis to identify farmers who are going above and beyond to protect our natural resources.

Surrounded by state and federal officials at the North Williston Cattle Company, owned by the Whitcomb family, Governor Scott emphasized the important role farmers play in Vermont communities.

“Vermont farmers are contributing to our economy and keeping our landscape beautiful and productive,” said Governor Phil Scott. “This new, science-based program will use soil health data to help us identify and honor farmers who are going above and beyond the regulations to protect our natural resources.”

The program is a partner effort by the Agency of Agriculture, Food and Markets, the USDA Natural Resources Conservation Service, the Vermont Association of Conservation Districts, Vermont Department of Environmental Conservation, and the University of Vermont Extension.

“We are still accepting VESP applications, and encourage farms of all types and sizes to apply,” added Vermont’s Ag Secretary, Anson Tebbetts. “We want farmers who are going the extra mile to be recognized and celebrated for their efforts.”

Tebbetts noted that many partners across the state and federal government came together to create this innovative program.

Following Governor Scott’s remarks, farmers Lorenzo and Onan Whitcomb gave a tour of their farm, including their robotic milker, and discussed some of the conservation practices they employ. To see aerial footage, captured by drone, of some of the Whitcomb’s conservation practices, including no-til corn, cover-cropping, and buffer strips, click here: [link](link is external)

To apply for the VESP Pilot, farmers must be in compliance with all State and Federal environmental regulations, and be actively farming their land.

Applicants for the VESP Pilot will be selected for participation through a competitive application ranking process on a rolling basis; there is no fee to participate. Five to 10 farms will be accepted into the pilot program, which will inform the final parameters of the Vermont Environmental Stewardship Program, launching in 2019. For more information, please visit: https://agriculture.vermont.gov/vesp(link is external)

About the Vermont Environmental Stewardship Program:

Conceptualized in 2016 in response to statewide water-quality and environmental challenges, the Vermont Environmental Stewardship Program (VESP) is a voluntary program that encourages and supports local agricultural producers to achieve environmental and agricultural excellence. VESP’s goal is to accelerate water-quality improvements through additional voluntary implementation efforts, and to honor farmers who have already embraced a high level of land stewardship.

KEEP READING ON VERMONTBIZ

Finding Common Ground on Carbon

Author: Chelsea Chandler | Published: June 9, 2017 

Even though global warming is a politically polarizing topic, it’s worth considering some areas of common ground—both figuratively and literally—when it comes to how we manage the carbon dioxide (CO2) that we’re releasing into the atmosphere. Natural carbon storage, for instance, is a win-win for Wisconsin’s citizens, our land, and the global climate, and the type of common sense solution we can all get behind.

To understand natural carbon storage, it’s important to recognize that carbon naturally cycles between different reservoirs on the planet: the atmosphere, oceans, biosphere, and geosphere. We can think of it like a budget: the carbon stored in one place generally offsets carbon naturally emitted in another place, creating a sort of carbon equilibrium. However, too much carbon moving into any one of these reservoirs—especially the atmosphere and oceans—can wreak havoc on this delicate balance.

Carbon overload happens when we have too much input from sources, and not enough capacity in sinks in which to store the carbon. Since the Industrial Revolution, scientists have measured more and more CO2 accumulating in the atmosphere through the burning of hydrocarbons long-stored as fossil fuels such as oil and coal. Meanwhile, by removing and degrading important ecosystems that act as carbon sinks, such as forests cleared for lumber and prairies converted to farmland or urban use, we diminish our capacity to remove carbon from the atmosphere.

Just as humans can manage the sources of COwe add to the atmosphere, we can also play a big role in managing carbon sinks that can take up and store CO2. Forests, for instance, are important biological sinks in which carbon is stored long-term in wood and soil. Sustainably managing forestlands and working to preserve large tracts of forests are two ways in which we can help to decrease levels of atmospheric carbon.

Prairies, where the majority of carbon storage is in the soil, were once massive biological carbon sinks. However, the USGS reports that since 1830, tallgrass prairie in Wisconsin has decreased over 99%, greatly diminishing our capacity for capturing carbon. In addition to preventing further agricultural or urban land conversion, landowners can help increase our natural carbon storage capacity by working to restore prairies, forests, and wetlands.

Farmers are active land stewards. It is in their best interest to sustain the soil because it in turn sustains them. More than many other professions, farmers are intimately linked to long-term changes in the weather. When someone makes a living off the land—and provides food and resources essential to others—long-term thinking is about sustainability in every sense of the word. Many farmers are already implementing common sense land management practices for storing more carbon, though there are many other opportunities. We’re only currently tapping about 10% of the soil carbon storage potential in U.S. cropland, and there’s a lot more we can do to maintain health of our environment, locally and globally.

KEEP READING ON WISCONSIN ACADEMY 

Living Soils: The Role of Microorganisms in Soil Health

Author: Christopher Johns | Published: June 20, 2017 

Soil fertility comprises three interrelated components: physical fertility, chemical fertility and biological fertility. Biological fertility, the organisms that live in the soil and interact with the other components, varies greatly depending upon conditions and it is highly complex and dynamic. It is the least well-understood fertility component. In addition to soil fertility, soil microorganisms play essential roles in the nutrient cycles that are fundamental to life on the planet. Fertile soils teem with soil microbes. There may be hundreds of millions to billions of microbes in a single gram of soil. The most numerous microbes in soil are the bacteria, followed in decreasing numerical order by the actinomycetes, the fungi, soil algae and soil protozoa.

Analysis

Introduction

In July 2015, FDI published a Strategic Analysis Paper entitled Under Our Feet: Soil Microorganisms as Primary Drivers of Essential Ecological Processes. Since the publication of that article there has been a moderate trend toward the study of soils holistically rather than the detailed study of soil components in isolation.  Holistic study is particularly pertinent to an understanding of soil microbiology. Microorganisms are not only directly influenced by fundamental soil characteristics such as moisture, oxygen and chemistry but also by each other in both beneficial and predatory ways. By becoming holistically aware of the fundamental importance of soil organisms and then developing and understand how biological processes in soil are influenced by changes in the soil environment, we can learn how to manage soil in a way that enhances the benefits provided by soil organisms.

The information to follow draws largely from the referenced title above. It is present here to outline the complexity and variety of soil microbiology and to propose a more holistic approach to soil research and management.

Soil fertility, or its capacity to enrich natural and agricultural plants, is dependent upon three interacting and mutually dependent components: physical fertility, chemical fertility and biological fertility. Physical fertility refers to the physical properties of the soil, including its structure, texture and water absorption and holding capacity, and root penetration. Chemical fertility involves nutrient levels and the presence of chemical conditions such as acidity, alkalinity and salinity that may be harmful or toxic to the plant. Biological fertility refers to the organisms that live in the soil and interact with the other components. These organisms live on soil, organic matter or other soil organisms and perform many vital processes in the soil. Some of them perform critical functions in the nutrient and carbon cycles. Very few soil organisms are pests.

Of the three fertility components, it is the microbiological element, the rich diversity of organisms such as bacteria, viruses, fungi and algae that form interactive microbial communities, that are the most complex and, paradoxically, the least well-understood. A near decade-long collaboration between the CSIRO and the Bio-platforms Australia company ranks the understanding of soil microbial communities as important as mapping the galaxies in the universe or the biodiversity of the oceans. It provides an opportunity to discover new species currently unknown to science. Soil microbial communities underpin the productivity of all agricultural enterprises and are primary drivers in ecological processes such as the nutrient and carbon cycling, degradation of contaminants and suppression of soil-borne diseases. They are also intimately involved in a range of beneficial and, at times essential, interrelationships with plants.

Definition

Soil microbiology is the study of organisms in soil, their functions and how they affect soil properties. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae, protozoa and viruses. Each of these groups has different characteristics that define the organisms and different functions in the soil it lives in. Importantly, these organisms do not exist in isolation; they interact and these interactions influence soil fertility as much or more than the organism’s individual activities.

KEEP READING ON FUTURE DIRECTIONS 

Soil Networks Become More Connected and Take up More Carbon As Nature Restoration Progresses

Authors: Elly Morriën and S. Emilia Hannula | Published: February 8, 2017 

Many ecosystems worldwide face exposure to intensified human use1,2,3, which has resulted in loss of biodiversity4, altered functioning5and altered provisioning of ecosystem services6. The abandonment of disturbed land represents one of the most widely used restoration strategies implemented at a global scale7, with the potential to promote biodiversity, and associated ecosystem services. However, the restoration of natural ecosystem functioning and soil properties is known to be a long-term process7,8, dependent upon the time it takes to restore connections between different components of the community9. Over half a century ago, Odum10 identified mechanistic linkages between the successional dynamics of natural communities and the functioning of natural ecosystems. Specifically, as communities progress through succession, diversity is expected to increase and nutrients will become ‘locked-up’ in the biota, with consequences for the build-up of soil organic matter and closure of the mineral cycles10. More recently, the interplay between aboveground and belowground biodiversity has emerged as a prominent determinant of the successional dynamics in biological communities11. However, little is known about how changes in the soil biota contribute to the associated changes in ecosystem functioning.

In ecosystems undergoing secondary succession, it is evident that available nitrogen diminishes, primary productivity decreases and the plant community shifts from fast- to slow-growing plant species12. There is less evidence of an increase of soil biodiversity13, and evidence of a relationship between soil biodiversity and ecosystem functioning is mixed, at best5,13,14,15. As a result, it is still unclear how soil and plant community composition relate to each other and what is the relative role of plants and soil biota in driving soil processes and plant community development12,17.

Interestingly, studies on a time series (chronosequence) of abandoned arable fields revealed that carbon and nitrogen mineralization by the soil food web increases during secondary succession18. This implies a more active soil microbial community in later successional stages19,20,21where bacterial-dominated systems are expected to be replaced by fungal-dominated systems22 with more carbon turnover via fungi23 and their consumers24. However, data to test these assumptions are largely lacking. Therefore, the aim of the present study was to examine how biodiversity, composition and structure of the soil community change during successional development of restored ecosystems.

We used a well-established chronosequence of nature restoration sites on ex-arable, formerly cultivated, lands that represent over 30 years of nature restoration. We determined biodiversity of almost all taxonomic groups of soil biota, analysed their network structure and added labelled carbon dioxide and mineral nitrogen to intact plant–soil systems in order to track their uptake by the soil food web. We tested the hypothesis that functional changes in carbon and nitrogen flows relate more strongly to the belowground community network structure than to belowground biodiversity.

We analysed variations in species co-occurrence and considered enhanced correlations as network tightening, which we define as a ‘significant increase in percentage connectance and an increase in the strong correlations as a percentage of all possible correlations’25. Our results reveal increased tightening and, therefore, connectance, of the belowground networks during nature restoration on the ex-arable land. A combination of correlation-based network analysis and isotope labelling shows that soil network tightening corresponds with enhanced efficiency of the carbon uptake in the fungal channel of the soil food web, without an increase in the total amount of soil biodiversity or in fungal-to-bacterial biomass ratios. For nitrogen, the non-microbial species groups revealed a similar pattern as for carbon. Tightening of the networks reflects stronger co-occurring patterns of variation in soil biota25. Increased carbon and nitrogen uptake capacity by the fungal channel in the soil food web can be explained by stronger co-occurrence of preys and their predators24, which enhances the efficiency of resource transfer in the soil food web compared with a soil food web where preys and predators are spatially isolated.

KEEP READING ON NATURE.COM